![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptid | Structured version Visualization version GIF version |
Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptid.1 | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
Ref | Expression |
---|---|
dvmptid | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . 2 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | dvmptid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
3 | 1 | cnfldtopon 22807 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
4 | toponmax 20952 | . . 3 ⊢ ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld)) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ (𝜑 → ℂ ∈ (TopOpen‘ℂfld)) |
6 | recnprss 23887 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | df-ss 3729 | . . 3 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆) | |
9 | 7, 8 | sylib 208 | . 2 ⊢ (𝜑 → (𝑆 ∩ ℂ) = 𝑆) |
10 | simpr 479 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
11 | 1cnd 10268 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ) | |
12 | mptresid 5614 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) = ( I ↾ ℂ) | |
13 | 12 | oveq2i 6825 | . . . 4 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (ℂ D ( I ↾ ℂ)) |
14 | dvid 23900 | . . . 4 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) | |
15 | fconstmpt 5320 | . . . 4 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
16 | 13, 14, 15 | 3eqtri 2786 | . . 3 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)) |
18 | 1, 2, 5, 9, 10, 11, 17 | dvmptres3 23938 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 ⊆ wss 3715 {csn 4321 {cpr 4323 ↦ cmpt 4881 I cid 5173 × cxp 5264 ↾ cres 5268 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 1c1 10149 TopOpenctopn 16304 ℂfldccnfld 19968 TopOnctopon 20937 D cdv 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-icc 12395 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-mulr 16177 df-starv 16178 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-rest 16305 df-topn 16306 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lp 21162 df-perf 21163 df-cn 21253 df-cnp 21254 df-haus 21341 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-xms 22346 df-ms 22347 df-cncf 22902 df-limc 23849 df-dv 23850 |
This theorem is referenced by: dvef 23962 dvsincos 23963 mvth 23974 dvlipcn 23976 dvivthlem1 23990 lhop2 23997 dvfsumle 24003 dvfsumabs 24005 dvfsumlem2 24009 dvtaylp 24343 taylthlem2 24347 pige3 24489 advlog 24620 advlogexp 24621 logtayl 24626 dvcxp1 24701 dvcxp2 24702 dvcncxp1 24704 loglesqrt 24719 dvatan 24882 lgamgulmlem2 24976 log2sumbnd 25453 itgexpif 31014 dvasin 33827 areacirclem1 33831 lhe4.4ex1a 39048 expgrowthi 39052 expgrowth 39054 binomcxplemdvbinom 39072 dvsinax 40648 dvmptidg 40652 dvcosax 40662 itgiccshift 40717 itgperiod 40718 itgsbtaddcnst 40719 dirkeritg 40840 fourierdlem39 40884 fourierdlem56 40900 fourierdlem60 40904 fourierdlem61 40905 fourierdlem62 40906 etransclem46 41018 |
Copyright terms: Public domain | W3C validator |