Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptadd Structured version   Visualization version   GIF version

 Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptadd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptadd.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptadd (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptadd.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
3 eqid 2770 . . . 4 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
42, 3fmptd 6527 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptadd.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
6 eqid 2770 . . . 4 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
75, 6fmptd 6527 . . 3 (𝜑 → (𝑥𝑋𝐶):𝑋⟶ℂ)
8 dvmptadd.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
98dmeqd 5464 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
10 dvmptadd.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
1110ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
12 dmmptg 5776 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1311, 12syl 17 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
149, 13eqtrd 2804 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
15 dvmptadd.dc . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
1615dmeqd 5464 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = dom (𝑥𝑋𝐷))
17 dvmptadd.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷𝑊)
1817ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐷𝑊)
19 dmmptg 5776 . . . . 5 (∀𝑥𝑋 𝐷𝑊 → dom (𝑥𝑋𝐷) = 𝑋)
2018, 19syl 17 . . . 4 (𝜑 → dom (𝑥𝑋𝐷) = 𝑋)
2116, 20eqtrd 2804 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐶)) = 𝑋)
221, 4, 7, 14, 21dvaddf 23924 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))))
23 ovex 6822 . . . . . 6 (𝑆 D (𝑥𝑋𝐶)) ∈ V
2423dmex 7245 . . . . 5 dom (𝑆 D (𝑥𝑋𝐶)) ∈ V
2521, 24syl6eqelr 2858 . . . 4 (𝜑𝑋 ∈ V)
26 eqidd 2771 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
27 eqidd 2771 . . . 4 (𝜑 → (𝑥𝑋𝐶) = (𝑥𝑋𝐶))
2825, 2, 5, 26, 27offval2 7060 . . 3 (𝜑 → ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ (𝐴 + 𝐶)))
2928oveq2d 6808 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ∘𝑓 + (𝑥𝑋𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))))
3025, 10, 17, 8, 15offval2 7060 . 2 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ∘𝑓 + (𝑆 D (𝑥𝑋𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
3122, 29, 303eqtr3d 2812 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060  Vcvv 3349  {cpr 4316   ↦ cmpt 4861  dom cdm 5249  (class class class)co 6792   ∘𝑓 cof 7041  ℂcc 10135  ℝcr 10136   + caddc 10140   D cdv 23846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-limc 23849  df-dv 23850 This theorem is referenced by:  dvmptsub  23949  dvmptre  23951  dvmptfsum  23957  dvsincos  23963  dvlipcn  23976  advlogexp  24621  loglesqrt  24719  dvatan  24882  lgamgulmlem2  24976  log2sumbnd  25453  dvasin  33821  areacirclem1  33825  binomcxplemdvbinom  39071  dvxpaek  40667  itgiccshift  40707  itgperiod  40708  dirkeritg  40830  fourierdlem28  40863  fourierdlem60  40894  fourierdlem61  40895
 Copyright terms: Public domain W3C validator