Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Visualization version   GIF version

Theorem dvivth 23972
 Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 23427 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
dvivth (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))

Proof of Theorem dvivth
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvivth.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐴(,)𝐵))
21adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
3 dvivth.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐴(,)𝐵))
43adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
5 dvivth.3 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
6 cncff 22897 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
87ffvelrnda 6522 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
98renegcld 10649 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → -(𝐹𝑤) ∈ ℝ)
10 eqid 2760 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))
119, 10fmptd 6548 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ)
12 ax-resscn 10185 . . . . . . . . . . . 12 ℝ ⊆ ℂ
13 ssid 3765 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
14 cncfss 22903 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
1512, 13, 14mp2an 710 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
1615, 5sseldi 3742 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
1710negfcncf 22923 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
1816, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
19 cncffvrn 22902 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2012, 18, 19sylancr 698 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2111, 20mpbird 247 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
2221adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
23 reelprrecn 10220 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ℝ ∈ {ℝ, ℂ})
257adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
2625ffvelrnda 6522 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
2726recnd 10260 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℂ)
28 fvexd 6364 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ V)
2925feqmptd 6411 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤)))
3029oveq2d 6829 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))))
31 ioossre 12428 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
32 dvfre 23913 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
337, 31, 32sylancl 697 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
34 dvivth.4 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3534feq2d 6192 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3633, 35mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3736adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3837feqmptd 6411 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
3930, 38eqtr3d 2796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4024, 27, 28, 39dvmptneg 23928 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
4140dmeqd 5481 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
42 dmmptg 5793 . . . . . . . . . . 11 (∀𝑤 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑤) ∈ V → dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵))
43 negex 10471 . . . . . . . . . . . 12 -((ℝ D 𝐹)‘𝑤) ∈ V
4443a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑤) ∈ V)
4542, 44mprg 3064 . . . . . . . . . 10 dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵)
4641, 45syl6eq 2810 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝐴(,)𝐵))
47 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 < 𝑁)
48 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
4936, 1ffvelrnd 6523 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
5049adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
513, 34eleqtrrd 2842 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
5233, 51ffvelrnd 6523 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
5352adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
54 iccssre 12448 . . . . . . . . . . . . . . 15 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5549, 52, 54syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5655adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5756, 48sseldd 3745 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℝ)
58 iccneg 12486 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
5950, 53, 57, 58syl3anc 1477 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6048, 59mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
6140fveq1d 6354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁))
62 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑁))
6362negeqd 10467 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑁))
64 eqid 2760 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))
65 negex 10471 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑁) ∈ V
6663, 64, 65fvmpt 6444 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
674, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6861, 67eqtrd 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6940fveq1d 6354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀))
70 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑀))
7170negeqd 10467 . . . . . . . . . . . . . 14 (𝑤 = 𝑀 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑀))
72 negex 10471 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑀) ∈ V
7371, 64, 72fvmpt 6444 . . . . . . . . . . . . 13 (𝑀 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
742, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7569, 74eqtrd 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7668, 75oveq12d 6831 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)) = (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
7760, 76eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)))
78 eqid 2760 . . . . . . . . 9 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦)))
792, 4, 22, 46, 47, 77, 78dvivthlem2 23971 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))))
8040rneqd 5508 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
8179, 80eleqtrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
82 negex 10471 . . . . . . . 8 -𝑥 ∈ V
8364elrnmpt 5527 . . . . . . . 8 (-𝑥 ∈ V → (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤)))
8482, 83ax-mp 5 . . . . . . 7 (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8581, 84sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8657recnd 10260 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℂ)
8786adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
8824, 27, 28, 39dvmptcl 23921 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
8987, 88neg11ad 10580 . . . . . . . 8 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ 𝑥 = ((ℝ D 𝐹)‘𝑤)))
90 eqcom 2767 . . . . . . . 8 (𝑥 = ((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥)
9189, 90syl6bb 276 . . . . . . 7 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥))
9291rexbidva 3187 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9385, 92mpbid 222 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥)
94 ffn 6206 . . . . . . 7 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
9537, 94syl 17 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
96 fvelrnb 6405 . . . . . 6 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9795, 96syl 17 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9893, 97mpbird 247 . . . 4 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
9998expr 644 . . 3 ((𝜑𝑀 < 𝑁) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
10099ssrdv 3750 . 2 ((𝜑𝑀 < 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
101 fveq2 6352 . . . . 5 (𝑀 = 𝑁 → ((ℝ D 𝐹)‘𝑀) = ((ℝ D 𝐹)‘𝑁))
102101oveq1d 6828 . . . 4 (𝑀 = 𝑁 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)))
10352rexrd 10281 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ*)
104 iccid 12413 . . . . 5 (((ℝ D 𝐹)‘𝑁) ∈ ℝ* → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
105103, 104syl 17 . . . 4 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
106102, 105sylan9eqr 2816 . . 3 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
107 ffn 6206 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
10833, 107syl 17 . . . . . 6 (𝜑 → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
109 fnfvelrn 6519 . . . . . 6 (((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ 𝑁 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
110108, 51, 109syl2anc 696 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
111110snssd 4485 . . . 4 (𝜑 → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
112111adantr 472 . . 3 ((𝜑𝑀 = 𝑁) → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
113106, 112eqsstrd 3780 . 2 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
1143adantr 472 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
1151adantr 472 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
1165adantr 472 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
11734adantr 472 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
118 simprl 811 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 < 𝑀)
119 simprr 813 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
120 eqid 2760 . . . . 5 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦)))
121114, 115, 116, 117, 118, 119, 120dvivthlem2 23971 . . . 4 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
122121expr 644 . . 3 ((𝜑𝑁 < 𝑀) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
123122ssrdv 3750 . 2 ((𝜑𝑁 < 𝑀) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
12431, 1sseldi 3742 . . 3 (𝜑𝑀 ∈ ℝ)
12531, 3sseldi 3742 . . 3 (𝜑𝑁 ∈ ℝ)
126124, 125lttri4d 10370 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
127100, 113, 123, 126mpjao3dan 1544 1 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  {csn 4321  {cpr 4323   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ran crn 5267   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127   · cmul 10133  ℝ*cxr 10265   < clt 10266   − cmin 10458  -cneg 10459  (,)cioo 12368  [,]cicc 12371  –cn→ccncf 22880   D cdv 23826 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830 This theorem is referenced by:  dvne0  23973
 Copyright terms: Public domain W3C validator