Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddval Structured version   Visualization version   GIF version

Theorem dvhvaddval 36696
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.)
Hypothesis
Ref Expression
dvhvaddval.a + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
Assertion
Ref Expression
dvhvaddval ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
Distinct variable groups:   𝑓,𝑔,𝐸   ,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓,𝑔)

Proof of Theorem dvhvaddval
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . 4 ( = 𝐹 → (1st) = (1st𝐹))
21coeq1d 5316 . . 3 ( = 𝐹 → ((1st) ∘ (1st𝑖)) = ((1st𝐹) ∘ (1st𝑖)))
3 fveq2 6229 . . . 4 ( = 𝐹 → (2nd) = (2nd𝐹))
43oveq1d 6705 . . 3 ( = 𝐹 → ((2nd) (2nd𝑖)) = ((2nd𝐹) (2nd𝑖)))
52, 4opeq12d 4441 . 2 ( = 𝐹 → ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩ = ⟨((1st𝐹) ∘ (1st𝑖)), ((2nd𝐹) (2nd𝑖))⟩)
6 fveq2 6229 . . . 4 (𝑖 = 𝐺 → (1st𝑖) = (1st𝐺))
76coeq2d 5317 . . 3 (𝑖 = 𝐺 → ((1st𝐹) ∘ (1st𝑖)) = ((1st𝐹) ∘ (1st𝐺)))
8 fveq2 6229 . . . 4 (𝑖 = 𝐺 → (2nd𝑖) = (2nd𝐺))
98oveq2d 6706 . . 3 (𝑖 = 𝐺 → ((2nd𝐹) (2nd𝑖)) = ((2nd𝐹) (2nd𝐺)))
107, 9opeq12d 4441 . 2 (𝑖 = 𝐺 → ⟨((1st𝐹) ∘ (1st𝑖)), ((2nd𝐹) (2nd𝑖))⟩ = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
11 dvhvaddval.a . . 3 + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓) (2nd𝑔))⟩)
1211dvhvaddcbv 36695 . 2 + = ( ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ ⟨((1st) ∘ (1st𝑖)), ((2nd) (2nd𝑖))⟩)
13 opex 4962 . 2 ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩ ∈ V
145, 10, 12, 13ovmpt2 6838 1 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cop 4216   × cxp 5141  ccom 5147  cfv 5926  (class class class)co 6690  cmpt2 6692  1st c1st 7208  2nd c2nd 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695
This theorem is referenced by:  dvhvadd  36698  dvhopaddN  36720
  Copyright terms: Public domain W3C validator