![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddval | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) |
Ref | Expression |
---|---|
dvhvaddval.a | ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) |
Ref | Expression |
---|---|
dvhvaddval | ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . . 4 ⊢ (ℎ = 𝐹 → (1st ‘ℎ) = (1st ‘𝐹)) | |
2 | 1 | coeq1d 5316 | . . 3 ⊢ (ℎ = 𝐹 → ((1st ‘ℎ) ∘ (1st ‘𝑖)) = ((1st ‘𝐹) ∘ (1st ‘𝑖))) |
3 | fveq2 6229 | . . . 4 ⊢ (ℎ = 𝐹 → (2nd ‘ℎ) = (2nd ‘𝐹)) | |
4 | 3 | oveq1d 6705 | . . 3 ⊢ (ℎ = 𝐹 → ((2nd ‘ℎ) ⨣ (2nd ‘𝑖)) = ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))) |
5 | 2, 4 | opeq12d 4441 | . 2 ⊢ (ℎ = 𝐹 → 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉 = 〈((1st ‘𝐹) ∘ (1st ‘𝑖)), ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))〉) |
6 | fveq2 6229 | . . . 4 ⊢ (𝑖 = 𝐺 → (1st ‘𝑖) = (1st ‘𝐺)) | |
7 | 6 | coeq2d 5317 | . . 3 ⊢ (𝑖 = 𝐺 → ((1st ‘𝐹) ∘ (1st ‘𝑖)) = ((1st ‘𝐹) ∘ (1st ‘𝐺))) |
8 | fveq2 6229 | . . . 4 ⊢ (𝑖 = 𝐺 → (2nd ‘𝑖) = (2nd ‘𝐺)) | |
9 | 8 | oveq2d 6706 | . . 3 ⊢ (𝑖 = 𝐺 → ((2nd ‘𝐹) ⨣ (2nd ‘𝑖)) = ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))) |
10 | 7, 9 | opeq12d 4441 | . 2 ⊢ (𝑖 = 𝐺 → 〈((1st ‘𝐹) ∘ (1st ‘𝑖)), ((2nd ‘𝐹) ⨣ (2nd ‘𝑖))〉 = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
11 | dvhvaddval.a | . . 3 ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
12 | 11 | dvhvaddcbv 36695 | . 2 ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
13 | opex 4962 | . 2 ⊢ 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 ∈ V | |
14 | 5, 10, 12, 13 | ovmpt2 6838 | 1 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 × cxp 5141 ∘ ccom 5147 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: dvhvadd 36698 dvhopaddN 36720 |
Copyright terms: Public domain | W3C validator |