Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Visualization version   GIF version

Theorem dvhopellsm 36920
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h 𝐻 = (LHyp‘𝐾)
dvhopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopellsm.a + = (+g𝑈)
dvhopellsm.s 𝑆 = (LSubSp‘𝑈)
dvhopellsm.p = (LSSum‘𝑈)
Assertion
Ref Expression
dvhopellsm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧, +   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑊,𝑦   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤)   𝐾(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem dvhopellsm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dvhopellsm.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 36913 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
543ad2ant1 1126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑈 ∈ LMod)
6 dvhopellsm.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
76lsssssubg 19170 . . . . 5 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
85, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (SubGrp‘𝑈))
9 simp2 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
108, 9sseldd 3751 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (SubGrp‘𝑈))
11 simp3 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
128, 11sseldd 3751 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (SubGrp‘𝑈))
13 dvhopellsm.a . . . 4 + = (+g𝑈)
14 dvhopellsm.p . . . 4 = (LSSum‘𝑈)
1513, 14lsmelval 18270 . . 3 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
1610, 12, 15syl2anc 565 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
17 eqid 2770 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
1817, 6lssss 19146 . . . . . . 7 (𝑌𝑆𝑌 ⊆ (Base‘𝑈))
19183ad2ant3 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Base‘𝑈))
20 eqid 2770 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
21 eqid 2770 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
221, 20, 21, 2, 17dvhvbase 36890 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
23223ad2ant1 1126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 23sseqtrd 3788 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
25 relxp 5266 . . . . 5 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
26 relss 5346 . . . . 5 (𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑌))
2724, 25, 26mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑌)
28 oveq2 6800 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢 + 𝑣) = (𝑢 +𝑧, 𝑤⟩))
2928eqeq2d 2780 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)))
3029exopxfr2 5405 . . . 4 (Rel 𝑌 → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3127, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3231rexbidv 3199 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3317, 6lssss 19146 . . . . . . 7 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
34333ad2ant2 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Base‘𝑈))
3534, 23sseqtrd 3788 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
36 relss 5346 . . . . 5 (𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑋))
3735, 25, 36mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑋)
38 oveq1 6799 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 +𝑧, 𝑤⟩) = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))
3938eqeq2d 2780 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4039anbi2d 606 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → ((⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
41402exbidv 2003 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4241exopxfr2 5405 . . . 4 (Rel 𝑋 → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
4337, 42syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
44 19.42vv 2034 . . . . 5 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
45 anass 459 . . . . . . . 8 (((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
46452exbii 1924 . . . . . . 7 (∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4746bicomi 214 . . . . . 6 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4847a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4944, 48syl5bbr 274 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → ((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
50492exbidv 2003 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5143, 50bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5216, 32, 513bitrd 294 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wex 1851  wcel 2144  wrex 3061  wss 3721  cop 4320   × cxp 5247  Rel wrel 5254  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  SubGrpcsubg 17795  LSSumclsm 18255  LModclmod 19072  LSubSpclss 19141  HLchlt 35152  LHypclh 35785  LTrncltrn 35902  TEndoctendo 36554  DVecHcdvh 36881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-undef 7550  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-0g 16309  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-lsm 18257  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-lmod 19074  df-lss 19142  df-lvec 19315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961  df-tendo 36557  df-edring 36559  df-dvech 36882
This theorem is referenced by:  diblsmopel  36974  dihopelvalcpre  37051  xihopellsmN  37057  dihopellsm  37058
  Copyright terms: Public domain W3C validator