Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Visualization version   GIF version

Theorem dvhopellsm 36232
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h 𝐻 = (LHyp‘𝐾)
dvhopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopellsm.a + = (+g𝑈)
dvhopellsm.s 𝑆 = (LSubSp‘𝑈)
dvhopellsm.p = (LSSum‘𝑈)
Assertion
Ref Expression
dvhopellsm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧, +   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑊,𝑦   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤)   𝐾(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem dvhopellsm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dvhopellsm.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 36225 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
543ad2ant1 1081 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑈 ∈ LMod)
6 dvhopellsm.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
76lsssssubg 18952 . . . . 5 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
85, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (SubGrp‘𝑈))
9 simp2 1061 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
108, 9sseldd 3602 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (SubGrp‘𝑈))
11 simp3 1062 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
128, 11sseldd 3602 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (SubGrp‘𝑈))
13 dvhopellsm.a . . . 4 + = (+g𝑈)
14 dvhopellsm.p . . . 4 = (LSSum‘𝑈)
1513, 14lsmelval 18058 . . 3 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
1610, 12, 15syl2anc 693 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
17 eqid 2621 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
1817, 6lssss 18931 . . . . . . 7 (𝑌𝑆𝑌 ⊆ (Base‘𝑈))
19183ad2ant3 1083 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Base‘𝑈))
20 eqid 2621 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
21 eqid 2621 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
221, 20, 21, 2, 17dvhvbase 36202 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
23223ad2ant1 1081 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 23sseqtrd 3639 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
25 relxp 5225 . . . . 5 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
26 relss 5204 . . . . 5 (𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑌))
2724, 25, 26mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑌)
28 oveq2 6655 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢 + 𝑣) = (𝑢 +𝑧, 𝑤⟩))
2928eqeq2d 2631 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)))
3029exopxfr2 5264 . . . 4 (Rel 𝑌 → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3127, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3231rexbidv 3050 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3317, 6lssss 18931 . . . . . . 7 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
34333ad2ant2 1082 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Base‘𝑈))
3534, 23sseqtrd 3639 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
36 relss 5204 . . . . 5 (𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑋))
3735, 25, 36mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑋)
38 oveq1 6654 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 +𝑧, 𝑤⟩) = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))
3938eqeq2d 2631 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4039anbi2d 740 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → ((⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
41402exbidv 1851 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4241exopxfr2 5264 . . . 4 (Rel 𝑋 → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
4337, 42syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
44 19.42vv 1919 . . . . 5 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
45 anass 681 . . . . . . . 8 (((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
46452exbii 1774 . . . . . . 7 (∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4746bicomi 214 . . . . . 6 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4847a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4944, 48syl5bbr 274 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → ((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
50492exbidv 1851 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5143, 50bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5216, 32, 513bitrd 294 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wex 1703  wcel 1989  wrex 2912  wss 3572  cop 4181   × cxp 5110  Rel wrel 5117  cfv 5886  (class class class)co 6647  Basecbs 15851  +gcplusg 15935  SubGrpcsubg 17582  LSSumclsm 18043  LModclmod 18857  LSubSpclss 18926  HLchlt 34463  LHypclh 35096  LTrncltrn 35213  TEndoctendo 35866  DVecHcdvh 36193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-riotaBAD 34065
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-undef 7396  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-0g 16096  df-preset 16922  df-poset 16940  df-plt 16952  df-lub 16968  df-glb 16969  df-join 16970  df-meet 16971  df-p0 17033  df-p1 17034  df-lat 17040  df-clat 17102  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-lsm 18045  df-mgp 18484  df-ur 18496  df-ring 18543  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-dvr 18677  df-drng 18743  df-lmod 18859  df-lss 18927  df-lvec 19097  df-oposet 34289  df-ol 34291  df-oml 34292  df-covers 34379  df-ats 34380  df-atl 34411  df-cvlat 34435  df-hlat 34464  df-llines 34610  df-lplanes 34611  df-lvols 34612  df-lines 34613  df-psubsp 34615  df-pmap 34616  df-padd 34908  df-lhyp 35100  df-laut 35101  df-ldil 35216  df-ltrn 35217  df-trl 35272  df-tendo 35869  df-edring 35871  df-dvech 36194
This theorem is referenced by:  diblsmopel  36286  dihopelvalcpre  36363  xihopellsmN  36369  dihopellsm  36370
  Copyright terms: Public domain W3C validator