![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopN | Structured version Visualization version GIF version |
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhop.b | ⊢ 𝐵 = (Base‘𝐾) |
dvhop.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhop.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhop.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhop.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) |
dvhop.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
dvhop.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
dvhop.o | ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvhopN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 811 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑈 ∈ 𝐸) | |
2 | dvhop.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvhop.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvhop.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 35754 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇) |
7 | dvhop.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
8 | 3, 4, 7 | tendoidcl 36374 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝑇) ∈ 𝐸) |
10 | dvhop.s | . . . . . 6 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
11 | 10 | dvhopspN 36721 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
12 | 1, 6, 9, 11 | syl12anc 1364 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
13 | 2, 3, 7 | tendoid 36378 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
14 | 13 | adantrl 752 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
15 | 3, 4, 7 | tendo1mulr 36376 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
16 | 15 | adantrl 752 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
17 | 14, 16 | opeq12d 4441 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉 = 〈( I ↾ 𝐵), 𝑈〉) |
18 | 12, 17 | eqtrd 2685 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈( I ↾ 𝐵), 𝑈〉) |
19 | 18 | oveq2d 6706 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉)) = (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉)) |
20 | simprl 809 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
21 | dvhop.o | . . . . 5 ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | 2, 3, 4, 7, 21 | tendo0cl 36395 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
23 | 22 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑂 ∈ 𝐸) |
24 | dvhop.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
25 | 24 | dvhopaddN 36720 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
26 | 20, 23, 6, 1, 25 | syl22anc 1367 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
27 | 2, 3, 4 | ltrn1o 35728 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
28 | 27 | adantrr 753 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹:𝐵–1-1-onto→𝐵) |
29 | f1of 6175 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
30 | fcoi1 6116 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
32 | dvhop.p | . . . . 5 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
33 | 2, 3, 4, 7, 21, 32 | tendo0pl 36396 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂𝑃𝑈) = 𝑈) |
34 | 33 | adantrl 752 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑂𝑃𝑈) = 𝑈) |
35 | 31, 34 | opeq12d 4441 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉 = 〈𝐹, 𝑈〉) |
36 | 19, 26, 35 | 3eqtrrd 2690 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 ↦ cmpt 4762 I cid 5052 × cxp 5141 ↾ cres 5145 ∘ ccom 5147 ⟶wf 5922 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 2nd c2nd 7209 Basecbs 15904 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 TEndoctendo 36357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-undef 7444 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tendo 36360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |