Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhdimlem Structured version   Visualization version   GIF version

Theorem dvhdimlem 37254
 Description: Lemma for dvh2dim 37255 and dvh3dim 37256. TODO: make this obsolete and use dvh4dimlem 37253 directly? (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvhdim.y (𝜑𝑌𝑉)
dvhdim.o 0 = (0g𝑈)
dvhdim.x (𝜑𝑋0 )
dvhdimlem.y (𝜑𝑌0 )
Assertion
Ref Expression
dvhdimlem (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvhdimlem
StepHypRef Expression
1 dvh3dim.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . 3 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . 3 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . 3 (𝜑𝑋𝑉)
7 dvhdim.y . . 3 (𝜑𝑌𝑉)
8 dvhdim.o . . 3 0 = (0g𝑈)
9 dvhdim.x . . 3 (𝜑𝑋0 )
10 dvhdimlem.y . . 3 (𝜑𝑌0 )
111, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10dvh4dimlem 37253 . 2 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}))
121, 2, 5dvhlmod 36920 . . . . 5 (𝜑𝑈 ∈ LMod)
13 df-tp 4322 . . . . . 6 {𝑋, 𝑌, 𝑌} = ({𝑋, 𝑌} ∪ {𝑌})
14 prssi 4488 . . . . . . . 8 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
156, 7, 14syl2anc 573 . . . . . . 7 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
167snssd 4476 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
1715, 16unssd 3940 . . . . . 6 (𝜑 → ({𝑋, 𝑌} ∪ {𝑌}) ⊆ 𝑉)
1813, 17syl5eqss 3798 . . . . 5 (𝜑 → {𝑋, 𝑌, 𝑌} ⊆ 𝑉)
19 ssun1 3927 . . . . . . 7 {𝑋, 𝑌} ⊆ ({𝑋, 𝑌} ∪ {𝑌})
2019, 13sseqtr4i 3787 . . . . . 6 {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}
2120a1i 11 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌})
223, 4lspss 19197 . . . . 5 ((𝑈 ∈ LMod ∧ {𝑋, 𝑌, 𝑌} ⊆ 𝑉 ∧ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌}))
2312, 18, 21, 22syl3anc 1476 . . . 4 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌}))
2423ssneld 3754 . . 3 (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2524reximdv 3164 . 2 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2611, 25mpd 15 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∃wrex 3062   ∪ cun 3721   ⊆ wss 3723  {csn 4317  {cpr 4319  {ctp 4321  ‘cfv 6030  Basecbs 16064  0gc0g 16308  LModclmod 19073  LSpanclspn 19184  HLchlt 35159  LHypclh 35793  DVecHcdvh 36888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-undef 7555  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-0g 16310  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316  df-lsatoms 34785  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35307  df-lplanes 35308  df-lvols 35309  df-lines 35310  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797  df-laut 35798  df-ldil 35913  df-ltrn 35914  df-trl 35969  df-tgrp 36553  df-tendo 36565  df-edring 36567  df-dveca 36813  df-disoa 36839  df-dvech 36889  df-dib 36949  df-dic 36983  df-dih 37039  df-doch 37158  df-djh 37205 This theorem is referenced by:  dvh2dim  37255  dvh3dim  37256
 Copyright terms: Public domain W3C validator