Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh2dim Structured version   Visualization version   GIF version

Theorem dvh2dim 37248
Description: There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
Assertion
Ref Expression
dvh2dim (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh2dim
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 eqid 2770 . . . . 5 (0g𝑈) = (0g𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 2, 3, 4, 5dvh1dim 37245 . . . 4 (𝜑 → ∃𝑧𝑉 𝑧 ≠ (0g𝑈))
76adantr 466 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 𝑧 ≠ (0g𝑈))
8 simpr 471 . . . . . . . . . 10 ((𝜑𝑋 = (0g𝑈)) → 𝑋 = (0g𝑈))
98sneqd 4326 . . . . . . . . 9 ((𝜑𝑋 = (0g𝑈)) → {𝑋} = {(0g𝑈)})
109fveq2d 6336 . . . . . . . 8 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋}) = (𝑁‘{(0g𝑈)}))
111, 2, 5dvhlmod 36913 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
12 dvh3dim.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
134, 12lspsn0 19220 . . . . . . . . . 10 (𝑈 ∈ LMod → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1411, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1514adantr 466 . . . . . . . 8 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1610, 15eqtrd 2804 . . . . . . 7 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋}) = {(0g𝑈)})
1716eleq2d 2835 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ {(0g𝑈)}))
18 velsn 4330 . . . . . 6 (𝑧 ∈ {(0g𝑈)} ↔ 𝑧 = (0g𝑈))
1917, 18syl6bb 276 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 = (0g𝑈)))
2019necon3bbid 2979 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ≠ (0g𝑈)))
2120rexbidv 3199 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧𝑉 𝑧 ≠ (0g𝑈)))
227, 21mpbird 247 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
235adantr 466 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
2524adantr 466 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑋𝑉)
26 simpr 471 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑋 ≠ (0g𝑈))
271, 2, 3, 12, 23, 25, 25, 4, 26, 26dvhdimlem 37247 . . 3 ((𝜑𝑋 ≠ (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
28 dfsn2 4327 . . . . . . 7 {𝑋} = {𝑋, 𝑋}
2928fveq2i 6335 . . . . . 6 (𝑁‘{𝑋}) = (𝑁‘{𝑋, 𝑋})
3029eleq2i 2841 . . . . 5 (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3130notbii 309 . . . 4 𝑧 ∈ (𝑁‘{𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3231rexbii 3188 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3327, 32sylibr 224 . 2 ((𝜑𝑋 ≠ (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
3422, 33pm2.61dane 3029 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wrex 3061  {csn 4314  {cpr 4316  cfv 6031  Basecbs 16063  0gc0g 16307  LModclmod 19072  LSpanclspn 19183  HLchlt 35152  LHypclh 35785  DVecHcdvh 36881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-undef 7550  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-0g 16309  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lsatoms 34778  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961  df-tgrp 36545  df-tendo 36557  df-edring 36559  df-dveca 36805  df-disoa 36832  df-dvech 36882  df-dib 36942  df-dic 36976  df-dih 37032  df-doch 37151  df-djh 37198
This theorem is referenced by:  dvh3dim  37249  dochsnnz  37253  hdmapevec  37638  hdmaprnlem15N  37664
  Copyright terms: Public domain W3C validator