Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Visualization version   GIF version

Theorem dvferm2 23969
 Description: One-sided version of dvferm 23970. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
Assertion
Ref Expression
dvferm2 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑈   𝑦,𝑋   𝜑,𝑦

Proof of Theorem dvferm2
Dummy variables 𝑧 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21oveq1d 6807 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑥) − (𝐹𝑈)) = ((𝐹𝑧) − (𝐹𝑈)))
3 oveq1 6799 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑈) = (𝑧𝑈))
42, 3oveq12d 6810 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
5 eqid 2770 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) = (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))
6 ovex 6822 . . . . . . . . . 10 (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) ∈ V
74, 5, 6fvmpt 6424 . . . . . . . . 9 (𝑧 ∈ (𝑋 ∖ {𝑈}) → ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) = (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)))
87fvoveq1d 6814 . . . . . . . 8 (𝑧 ∈ (𝑋 ∖ {𝑈}) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9 id 22 . . . . . . . 8 (𝑦 = -((ℝ D 𝐹)‘𝑈) → 𝑦 = -((ℝ D 𝐹)‘𝑈))
108, 9breqan12rd 4801 . . . . . . 7 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → ((abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦 ↔ (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
1110imbi2d 329 . . . . . 6 ((𝑦 = -((ℝ D 𝐹)‘𝑈) ∧ 𝑧 ∈ (𝑋 ∖ {𝑈})) → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1211ralbidva 3133 . . . . 5 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
1312rexbidv 3199 . . . 4 (𝑦 = -((ℝ D 𝐹)‘𝑈) → (∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
14 dvferm.d . . . . . . . . . 10 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
15 dvf 23890 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
16 ffun 6188 . . . . . . . . . . 11 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
17 funfvbrb 6473 . . . . . . . . . . 11 (Fun (ℝ D 𝐹) → (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈)))
1815, 16, 17mp2b 10 . . . . . . . . . 10 (𝑈 ∈ dom (ℝ D 𝐹) ↔ 𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
1914, 18sylib 208 . . . . . . . . 9 (𝜑𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈))
20 eqid 2770 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2770 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 ax-resscn 10194 . . . . . . . . . . 11 ℝ ⊆ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
24 dvferm.a . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℝ)
25 fss 6196 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
2624, 22, 25sylancl 566 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℂ)
27 dvferm.b . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
2820, 21, 5, 23, 26, 27eldv 23881 . . . . . . . . 9 (𝜑 → (𝑈(ℝ D 𝐹)((ℝ D 𝐹)‘𝑈) ↔ (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))))
2919, 28mpbid 222 . . . . . . . 8 (𝜑 → (𝑈 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) ∧ ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈)))
3029simprd 477 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3130adantr 466 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈))
3227, 22syl6ss 3762 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
33 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
34 dvferm.u . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴(,)𝐵))
3533, 34sseldd 3751 . . . . . . . . . 10 (𝜑𝑈𝑋)
3626, 32, 35dvlem 23879 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝑈})) → (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)) ∈ ℂ)
3736, 5fmptd 6527 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3837adantr 466 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))):(𝑋 ∖ {𝑈})⟶ℂ)
3932adantr 466 . . . . . . . 8 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑋 ⊆ ℂ)
4039ssdifssd 3897 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (𝑋 ∖ {𝑈}) ⊆ ℂ)
4132, 35sseldd 3751 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
4241adantr 466 . . . . . . 7 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 𝑈 ∈ ℂ)
4338, 40, 42ellimc3 23862 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈))) lim 𝑈) ↔ (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))))
4431, 43mpbid 222 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → (((ℝ D 𝐹)‘𝑈) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦)))
4544simprd 477 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘(((𝑥 ∈ (𝑋 ∖ {𝑈}) ↦ (((𝐹𝑥) − (𝐹𝑈)) / (𝑥𝑈)))‘𝑧) − ((ℝ D 𝐹)‘𝑈))) < 𝑦))
46 dvfre 23933 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4724, 27, 46syl2anc 565 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
4847, 14ffvelrnd 6503 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
4948adantr 466 . . . . . 6 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5049renegcld 10658 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
5148lt0neg1d 10798 . . . . . 6 (𝜑 → (((ℝ D 𝐹)‘𝑈) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑈)))
5251biimpa 462 . . . . 5 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → 0 < -((ℝ D 𝐹)‘𝑈))
5350, 52elrpd 12071 . . . 4 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → -((ℝ D 𝐹)‘𝑈) ∈ ℝ+)
5413, 45, 53rspcdva 3464 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5524ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝐹:𝑋⟶ℝ)
5627ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑋 ⊆ ℝ)
5734ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ (𝐴(,)𝐵))
5833ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → (𝐴(,)𝐵) ⊆ 𝑋)
5914ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑈 ∈ dom (ℝ D 𝐹))
60 dvferm2.r . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
6160ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
62 simpllr 752 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ((ℝ D 𝐹)‘𝑈) < 0)
63 simplr 744 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → 𝑢 ∈ ℝ+)
64 simpr 471 . . . . . 6 ((((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
65 eqid 2770 . . . . . 6 ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2) = ((if(𝐴 ≤ (𝑈𝑢), (𝑈𝑢), 𝐴) + 𝑈) / 2)
6655, 56, 57, 58, 59, 61, 62, 63, 64, 65dvferm2lem 23968 . . . . 5 ¬ (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6766imnani 387 . . . 4 (((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) ∧ 𝑢 ∈ ℝ+) → ¬ ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6867nrexdv 3148 . . 3 ((𝜑 ∧ ((ℝ D 𝐹)‘𝑈) < 0) → ¬ ∃𝑢 ∈ ℝ+𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑢) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6954, 68pm2.65da 800 . 2 (𝜑 → ¬ ((ℝ D 𝐹)‘𝑈) < 0)
70 0re 10241 . . 3 0 ∈ ℝ
71 lenlt 10317 . . 3 ((0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑈) ∈ ℝ) → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7270, 48, 71sylancr 567 . 2 (𝜑 → (0 ≤ ((ℝ D 𝐹)‘𝑈) ↔ ¬ ((ℝ D 𝐹)‘𝑈) < 0))
7369, 72mpbird 247 1 (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ∃wrex 3061   ∖ cdif 3718   ⊆ wss 3721  ifcif 4223  {csn 4314   class class class wbr 4784   ↦ cmpt 4861  dom cdm 5249  Fun wfun 6025  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  ℂcc 10135  ℝcr 10136  0cc0 10137   + caddc 10140   < clt 10275   ≤ cle 10276   − cmin 10467  -cneg 10468   / cdiv 10885  2c2 11271  ℝ+crp 12034  (,)cioo 12379  abscabs 14181   ↾t crest 16288  TopOpenctopn 16289  ℂfldccnfld 19960  intcnt 21041   limℂ climc 23845   D cdv 23846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-icc 12386  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-mulr 16162  df-starv 16163  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-rest 16290  df-topn 16291  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-cncf 22900  df-limc 23849  df-dv 23850 This theorem is referenced by:  dvferm  23970  dvivthlem1  23990
 Copyright terms: Public domain W3C validator