![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvferm | Structured version Visualization version GIF version |
Description: Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvferm.a | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
dvferm.b | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
dvferm.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
dvferm.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
dvferm.d | ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
dvferm.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
Ref | Expression |
---|---|
dvferm | ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
2 | dvferm.b | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
3 | dvferm.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) | |
4 | dvferm.s | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) | |
5 | dvferm.d | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) | |
6 | ne0i 4064 | . . . . . . 7 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
7 | ndmioo 12415 | . . . . . . . 8 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
8 | 7 | necon1ai 2959 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
9 | 3, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
10 | 9 | simpld 477 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
11 | eliooord 12446 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) | |
12 | 3, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
13 | 12 | simpld 477 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝑈) |
14 | ioossre 12448 | . . . . . . . . 9 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
15 | 14, 3 | sseldi 3742 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
16 | 15 | rexrd 10301 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ*) |
17 | xrltle 12195 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑈 ∈ ℝ*) → (𝐴 < 𝑈 → 𝐴 ≤ 𝑈)) | |
18 | 10, 16, 17 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 𝑈 → 𝐴 ≤ 𝑈)) |
19 | 13, 18 | mpd 15 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝑈) |
20 | iooss1 12423 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
21 | 10, 19, 20 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
22 | dvferm.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
23 | ssralv 3807 | . . . 4 ⊢ ((𝑈(,)𝐵) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
24 | 21, 22, 23 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
25 | 1, 2, 3, 4, 5, 24 | dvferm1 23967 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) |
26 | 9 | simprd 482 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
27 | 12 | simprd 482 | . . . . . 6 ⊢ (𝜑 → 𝑈 < 𝐵) |
28 | xrltle 12195 | . . . . . . 7 ⊢ ((𝑈 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑈 < 𝐵 → 𝑈 ≤ 𝐵)) | |
29 | 16, 26, 28 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → (𝑈 < 𝐵 → 𝑈 ≤ 𝐵)) |
30 | 27, 29 | mpd 15 | . . . . 5 ⊢ (𝜑 → 𝑈 ≤ 𝐵) |
31 | iooss2 12424 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) | |
32 | 26, 30, 31 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵)) |
33 | ssralv 3807 | . . . 4 ⊢ ((𝐴(,)𝑈) ⊆ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
34 | 32, 22, 33 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
35 | 1, 2, 3, 4, 5, 34 | dvferm2 23969 | . 2 ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) |
36 | dvfre 23933 | . . . . 5 ⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
37 | 1, 2, 36 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
38 | 37, 5 | ffvelrnd 6524 | . . 3 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
39 | 0re 10252 | . . 3 ⊢ 0 ∈ ℝ | |
40 | letri3 10335 | . . 3 ⊢ ((((ℝ D 𝐹)‘𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) | |
41 | 38, 39, 40 | sylancl 697 | . 2 ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) = 0 ↔ (((ℝ D 𝐹)‘𝑈) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑈)))) |
42 | 25, 35, 41 | mpbir2and 995 | 1 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 dom cdm 5266 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 0cc0 10148 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 (,)cioo 12388 D cdv 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-icc 12395 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-mulr 16177 df-starv 16178 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-rest 16305 df-topn 16306 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lp 21162 df-perf 21163 df-cn 21253 df-cnp 21254 df-haus 21341 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-xms 22346 df-ms 22347 df-cncf 22902 df-limc 23849 df-dv 23850 |
This theorem is referenced by: rollelem 23971 dvivthlem1 23990 |
Copyright terms: Public domain | W3C validator |