Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszrcl Structured version   Visualization version   GIF version

Theorem dvdszrcl 15207
 Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))

Proof of Theorem dvdszrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 15203 . . 3 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
2 opabssxp 5350 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ)
31, 2eqsstri 3776 . 2 ∥ ⊆ (ℤ × ℤ)
43brel 5325 1 (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051   class class class wbr 4804  {copab 4864   × cxp 5264  (class class class)co 6814   · cmul 10153  ℤcz 11589   ∥ cdvds 15202 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-dvds 15203 This theorem is referenced by:  dvdsmod0  15208  p1modz1  15209  dvdsmodexp  15210  dvdsaddre2b  15251  dvdsabseq  15257  divconjdvds  15259  evenelz  15282  4dvdseven  15331  dfgcd2  15485  dvdsmulgcd  15496  dvdsnprmd  15625  oddvdsi  18187  odmulg  18193  gexdvdsi  18218  nzss  39036  nzin  39037
 Copyright terms: Public domain W3C validator