![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssqf | Structured version Visualization version GIF version |
Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.) |
Ref | Expression |
---|---|
dvdssqf | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1232 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∥ 𝐴) | |
2 | prmz 15611 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
3 | 2 | adantl 473 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
4 | zsqcl 13148 | . . . . . . 7 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
6 | simpl2 1230 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ) | |
7 | 6 | nnzd 11693 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
8 | simpl1 1228 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) | |
9 | 8 | nnzd 11693 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
10 | dvdstr 15240 | . . . . . 6 ⊢ (((𝑝↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑝↑2) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) | |
11 | 5, 7, 9, 10 | syl3anc 1477 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → (((𝑝↑2) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴) → (𝑝↑2) ∥ 𝐴)) |
12 | 1, 11 | mpan2d 712 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ 𝐵 → (𝑝↑2) ∥ 𝐴)) |
13 | 12 | reximdva 3155 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
14 | isnsqf 25081 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((μ‘𝐵) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵)) | |
15 | 14 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐵) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐵)) |
16 | isnsqf 25081 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
17 | 16 | 3ad2ant1 1128 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
18 | 13, 15, 17 | 3imtr4d 283 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐵) = 0 → (μ‘𝐴) = 0)) |
19 | 18 | necon3d 2953 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 0cc0 10148 ℕcn 11232 2c2 11282 ℤcz 11589 ↑cexp 13074 ∥ cdvds 15202 ℙcprime 15607 μcmu 25041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-seq 13016 df-exp 13075 df-hash 13332 df-dvds 15203 df-prm 15608 df-mu 25047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |