Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul Structured version   Visualization version   GIF version

Theorem dvdsrmul 18856
 Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrmul ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))

Proof of Theorem dvdsrmul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 468 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simpr 471 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 eqid 2771 . . 3 (𝑌 · 𝑋) = (𝑌 · 𝑋)
4 oveq1 6800 . . . . 5 (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋))
54eqeq1d 2773 . . . 4 (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋)))
65rspcev 3460 . . 3 ((𝑌𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
72, 3, 6sylancl 574 . 2 ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
8 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
9 dvdsr.2 . . 3 = (∥r𝑅)
10 dvdsr.3 . . 3 · = (.r𝑅)
118, 9, 10dvdsr 18854 . 2 (𝑋 (𝑌 · 𝑋) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))
121, 7, 11sylanbrc 572 1 ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∃wrex 3062   class class class wbr 4786  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  .rcmulr 16150  ∥rcdsr 18846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-dvdsr 18849 This theorem is referenced by:  dvdsrid  18859  dvdsrtr  18860  dvdsrmul1  18861  dvdsrneg  18862  unitmulclb  18873  unitgrp  18875  isdrng2  18967  subrguss  19005  subrgunit  19008  fidomndrnglem  19521  invrvald  20701  dvdsq1p  24140  matunitlindflem2  33739
 Copyright terms: Public domain W3C validator