MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqle Structured version   Visualization version   GIF version

Theorem dvdsprmpweqle 15637
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 15635 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
21imp 444 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
3 nn0re 11339 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant3 1104 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
54adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → 𝑁 ∈ ℝ)
6 nn0re 11339 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
75, 6anim12i 589 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑛 ∈ ℝ))
87ancomd 466 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
98adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
10 lelttric 10182 . . . . . . . 8 ((𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑛𝑁𝑁 < 𝑛))
119, 10syl 17 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝑁 < 𝑛))
12 breq1 4688 . . . . . . . . . . . . . . . 16 (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
1312adantl 481 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
14 prmnn 15435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1514nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
16153ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ0)
1716adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℕ0)
18 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
1917, 18nn0expcld 13071 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ0)
2019nn0zd 11518 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
2114nncnd 11074 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
22213ad2ant1 1102 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℂ)
2322adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℂ)
2414nnne0d 11103 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ≠ 0)
25243ad2ant1 1102 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ≠ 0)
2625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ≠ 0)
27 nn0z 11438 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
2827adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
2923, 26, 28expne0d 13054 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ≠ 0)
30 simp3 1083 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3130adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3217, 31nn0expcld 13071 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ0)
3332nn0zd 11518 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℤ)
34 dvdsval2 15030 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0 ∧ (𝑃𝑁) ∈ ℤ) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3520, 29, 33, 34syl3anc 1366 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3621, 24jca 553 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
37363ad2ant1 1102 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
38 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
39383ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
4039, 27anim12i 589 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
41 expsub 12948 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑃↑(𝑁𝑛)) = ((𝑃𝑁) / (𝑃𝑛)))
4241eqcomd 2657 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4337, 40, 42syl2an2r 893 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4443eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ ↔ (𝑃↑(𝑁𝑛)) ∈ ℤ))
4523adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℂ)
46 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
47463ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
49 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5148, 50subcld 10430 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁𝑛) ∈ ℂ)
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁𝑛) ∈ ℂ)
5347, 49anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
55 negsubdi2 10378 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ) → -(𝑁𝑛) = (𝑛𝑁))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) = (𝑛𝑁))
5730anim1i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℕ0𝑛 ∈ ℕ0))
5857ancomd 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
59 ltsubnn0 11382 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
6160imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ0)
6256, 61eqeltrd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) ∈ ℕ0)
63 expneg2 12909 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (𝑁𝑛) ∈ ℂ ∧ -(𝑁𝑛) ∈ ℕ0) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6445, 52, 62, 63syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6564eleq1d 2715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ ↔ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ))
6614nnred 11073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
67663ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℝ)
7069, 61reexpcld 13065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑛𝑁)) ∈ ℝ)
71 znnsub 11461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7240, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7372biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ)
74 prmgt1 15456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 1 < 𝑃)
75743ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 < 𝑃)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 1 < 𝑃)
7776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < 𝑃)
78 expgt1 12938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑛𝑁) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑛𝑁)))
7969, 73, 77, 78syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < (𝑃↑(𝑛𝑁)))
8070, 79jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁))))
81 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-(𝑁𝑛) = (𝑛𝑁) → (𝑃↑-(𝑁𝑛)) = (𝑃↑(𝑛𝑁)))
8281eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ↔ (𝑃↑(𝑛𝑁)) ∈ ℝ))
8381breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → (1 < (𝑃↑-(𝑁𝑛)) ↔ 1 < (𝑃↑(𝑛𝑁))))
8482, 83anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-(𝑁𝑛) = (𝑛𝑁) → (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) ↔ ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁)))))
8580, 84syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛)))))
8656, 85mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))))
87 recnz 11490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8988pm2.21d 118 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ → 𝑛𝑁))
9065, 89sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁))
9190ex 449 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁)))
9291com23 86 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9344, 92sylbid 230 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9435, 93sylbid 230 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9594adantr 480 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9613, 95sylbid 230 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9796ex 449 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁))))
9897com23 86 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁))))
9998ex 449 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
10099com23 86 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝑛 ∈ ℕ0 → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
101100imp41 618 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑁 < 𝑛𝑛𝑁))
102101com12 32 . . . . . . . 8 (𝑁 < 𝑛 → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
103102jao1i 842 . . . . . . 7 ((𝑛𝑁𝑁 < 𝑛) → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
10411, 103mpcom 38 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁)
105 simpr 476 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝐴 = (𝑃𝑛))
106104, 105jca 553 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝐴 = (𝑃𝑛)))
107106ex 449 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝑛𝑁𝐴 = (𝑃𝑛))))
108107reximdva 3046 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
1092, 108mpd 15 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛)))
110109ex 449 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cexp 12900  cdvds 15027  cprime 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589
This theorem is referenced by:  odz2prm2pw  41800
  Copyright terms: Public domain W3C validator