![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsprm | Structured version Visualization version GIF version |
Description: An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
dvdsprm | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm4 15599 | . . . . 5 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) | |
2 | 1 | simprbi 483 | . . . 4 ⊢ (𝑃 ∈ ℙ → ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) |
3 | breq1 4807 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 ∥ 𝑃 ↔ 𝑁 ∥ 𝑃)) | |
4 | eqeq1 2764 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 = 𝑃 ↔ 𝑁 = 𝑃)) | |
5 | 3, 4 | imbi12d 333 | . . . . 5 ⊢ (𝑧 = 𝑁 → ((𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ (𝑁 ∥ 𝑃 → 𝑁 = 𝑃))) |
6 | 5 | rspcv 3445 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) → (𝑁 ∥ 𝑃 → 𝑁 = 𝑃))) |
7 | 2, 6 | mpan9 487 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∥ 𝑃 → 𝑁 = 𝑃)) |
8 | 7 | ancoms 468 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 → 𝑁 = 𝑃)) |
9 | eluzelz 11889 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
10 | iddvds 15197 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
11 | breq2 4808 | . . . . 5 ⊢ (𝑁 = 𝑃 → (𝑁 ∥ 𝑁 ↔ 𝑁 ∥ 𝑃)) | |
12 | 10, 11 | syl5ibcom 235 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 𝑃 → 𝑁 ∥ 𝑃)) |
13 | 9, 12 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 = 𝑃 → 𝑁 ∥ 𝑃)) |
14 | 13 | adantr 472 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 = 𝑃 → 𝑁 ∥ 𝑃)) |
15 | 8, 14 | impbid 202 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 class class class wbr 4804 ‘cfv 6049 2c2 11262 ℤcz 11569 ℤ≥cuz 11879 ∥ cdvds 15182 ℙcprime 15587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-prm 15588 |
This theorem is referenced by: prmrp 15626 prmdvdsexpb 15630 oddprm 15717 4sqlem17 15867 prmlem0 16014 ppiublem1 25126 chtub 25136 lgsval2lem 25231 lgsqr 25275 lgseisenlem4 25302 lgsquadlem1 25304 lgsquad2 25310 m1lgs 25312 ostth3 25526 ex-mod 27617 2sqcoprm 29956 lighneallem2 42033 |
Copyright terms: Public domain | W3C validator |