MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmul1 Structured version   Visualization version   GIF version

Theorem dvdsmul1 15050
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul1
StepHypRef Expression
1 zcn 11420 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 zcn 11420 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 mulcom 10060 . . 3 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁))
41, 2, 3syl2anr 494 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁))
5 zmulcl 11464 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
6 dvds0lem 15039 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁))
76ex 449 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
873com12 1288 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
95, 8mpd3an3 1465 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
104, 9mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cc 9972   · cmul 9979  cz 11415  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-dvds 15028
This theorem is referenced by:  dvdsmultr1  15066  3dvdsdec  15101  3dvdsdecOLD  15102  3dvds2dec  15103  3dvds2decOLD  15104  2teven  15126  opoe  15134  omoe  15135  z4even  15155  ndvdsi  15183  bits0e  15198  bits0o  15199  mulgcd  15312  dvdsmulgcd  15321  lcmcllem  15356  lcmgcdlem  15366  qredeq  15418  cncongr2  15429  nprm  15448  exprmfct  15463  phimullem  15531  prmdiv  15537  iserodd  15587  difsqpwdvds  15638  expnprm  15653  pockthlem  15656  prmreclem3  15669  4sqlem14  15709  odmulg2  18018  odbezout  18021  gexdvds  18045  sylow2alem2  18079  odadd1  18297  odadd2  18298  gexexlem  18301  prmirredlem  19889  znunit  19960  wilthlem2  24840  dvdsflf1o  24958  dvdsmulf1o  24965  ppiublem1  24972  ppiublem2  24973  perfectlem1  24999  bposlem3  25056  lgsdir  25102  lgsquadlem1  25150  lgsquad2lem1  25154  lgsquad2lem2  25155  2lgsoddprmlem2  25179  2lgsoddprmlem3  25184  2sqlem4  25191  2sqblem  25201  dchrisumlem1  25223  ex-ind-dvds  27448  2sqmod  29776  jm2.23  37880  jm2.27c  37891  inductionexd  38770  fouriersw  40766  etransclem24  40793  etransclem28  40797  2pwp1prm  41828  perfectALTVlem1  41955
  Copyright terms: Public domain W3C validator