MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmod Structured version   Visualization version   GIF version

Theorem dvdsmod 15259
Description: Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 1231 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℤ)
21zred 11684 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℝ)
3 simpl2 1229 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℕ)
43nnrpd 12073 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℝ+)
5 modval 12878 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
62, 4, 5syl2anc 573 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
76breq2d 4798 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
8 simpl1 1227 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℕ)
98nnzd 11683 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℤ)
103nnzd 11683 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℤ)
112, 3nndivred 11271 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 / 𝑁) ∈ ℝ)
1211flcld 12807 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ)
13 simpr 471 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃𝑁)
149, 10, 12, 13dvdsmultr1d 15229 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁))))
1510, 12zmulcld 11690 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ)
1615zcnd 11685 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ)
1716subid1d 10583 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁))))
1814, 17breqtrrd 4814 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))
19 0zd 11591 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 ∈ ℤ)
20 moddvds 15200 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
218, 15, 19, 20syl3anc 1476 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2218, 21mpbird 247 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃))
2322eqeq2d 2781 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃)))
24 moddvds 15200 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
258, 1, 15, 24syl3anc 1476 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
26 moddvds 15200 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
278, 1, 19, 26syl3anc 1476 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
2823, 25, 273bitr3d 298 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0)))
291zcnd 11685 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℂ)
3029subid1d 10583 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 − 0) = 𝐾)
3130breq2d 4798 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃𝐾))
327, 28, 313bitrd 294 1 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138   · cmul 10143  cmin 10468   / cdiv 10886  cn 11222  cz 11579  +crp 12035  cfl 12799   mod cmo 12876  cdvds 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877  df-dvds 15190
This theorem is referenced by:  ppiublem1  25148  lgsdir2lem2  25272
  Copyright terms: Public domain W3C validator