![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdslcmf | Structured version Visualization version GIF version |
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
Ref | Expression |
---|---|
dvdslcmf | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3738 | . . . . . . . 8 ⊢ (𝑍 ⊆ ℤ → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) | |
2 | 1 | adantr 472 | . . . . . . 7 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
3 | 2 | adantr 472 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
4 | 3 | imp 444 | . . . . 5 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ ℤ) |
5 | dvds0 15219 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ 0) |
7 | lcmf0val 15557 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | |
8 | 7 | ad4ant13 1207 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → (lcm‘𝑍) = 0) |
9 | 6, 8 | breqtrrd 4832 | . . 3 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ (lcm‘𝑍)) |
10 | 9 | ralrimiva 3104 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
11 | df-nel 3036 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
12 | lcmfcllem 15560 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) | |
13 | 12 | 3expa 1112 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
14 | 11, 13 | sylan2br 494 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
15 | lcmfn0cl 15561 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | |
16 | 15 | 3expa 1112 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
17 | 11, 16 | sylan2br 494 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
18 | breq2 4808 | . . . . . 6 ⊢ (𝑛 = (lcm‘𝑍) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (lcm‘𝑍))) | |
19 | 18 | ralbidv 3124 | . . . . 5 ⊢ (𝑛 = (lcm‘𝑍) → (∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
20 | 19 | elrab3 3505 | . . . 4 ⊢ ((lcm‘𝑍) ∈ ℕ → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
22 | 14, 21 | mpbid 222 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
23 | 10, 22 | pm2.61dan 867 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∉ wnel 3035 ∀wral 3050 {crab 3054 ⊆ wss 3715 class class class wbr 4804 ‘cfv 6049 Fincfn 8123 0cc0 10148 ℕcn 11232 ℤcz 11589 ∥ cdvds 15202 lcmclcmf 15524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-fz 12540 df-fzo 12680 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-prod 14855 df-dvds 15203 df-lcmf 15526 |
This theorem is referenced by: lcmf 15568 lcmfunsnlem2lem2 15574 lcmfdvdsb 15578 prmodvdslcmf 15973 prmgaplcmlem1 15977 |
Copyright terms: Public domain | W3C validator |