![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdslcm | Structured version Visualization version GIF version |
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
dvdslcm | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds0 15220 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∥ 0) | |
2 | 1 | ad2antrr 764 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ 0) |
3 | oveq1 6822 | . . . . . . 7 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁)) | |
4 | 0z 11601 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
5 | lcmcom 15529 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁)) | |
6 | 4, 5 | mpan2 709 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁)) |
7 | lcm0val 15530 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) | |
8 | 6, 7 | eqtr3d 2797 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0) |
9 | 3, 8 | sylan9eqr 2817 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
10 | 9 | adantll 752 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
11 | oveq2 6823 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) | |
12 | lcm0val 15530 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
13 | 11, 12 | sylan9eqr 2817 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
14 | 13 | adantlr 753 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
15 | 10, 14 | jaodan 861 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0) |
16 | 2, 15 | breqtrrd 4833 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 lcm 𝑁)) |
17 | dvds0 15220 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | |
18 | 17 | ad2antlr 765 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ 0) |
19 | 18, 15 | breqtrrd 4833 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 lcm 𝑁)) |
20 | 16, 19 | jca 555 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
21 | lcmcllem 15532 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | |
22 | lcmn0cl 15533 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | |
23 | breq2 4809 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) | |
24 | breq2 4809 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
25 | 23, 24 | anbi12d 749 | . . . . 5 ⊢ (𝑛 = (𝑀 lcm 𝑁) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
26 | 25 | elrab3 3506 | . . . 4 ⊢ ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
27 | 22, 26 | syl 17 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
28 | 21, 27 | mpbid 222 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
29 | 20, 28 | pm2.61dan 867 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {crab 3055 class class class wbr 4805 (class class class)co 6815 0cc0 10149 ℕcn 11233 ℤcz 11590 ∥ cdvds 15203 lcm clcm 15524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-dvds 15204 df-lcm 15526 |
This theorem is referenced by: gcddvdslcm 15538 lcmneg 15539 lcmgcdeq 15548 lcmdvdsb 15549 lcmftp 15572 lcmfunsnlem2lem2 15575 nzin 39038 |
Copyright terms: Public domain | W3C validator |