![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsflip | Structured version Visualization version GIF version |
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
Ref | Expression |
---|---|
dvdsflip.a | ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
dvdsflip.f | ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) |
Ref | Expression |
---|---|
dvdsflip | ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsflip.f | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) | |
2 | dvdsflip.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
3 | 2 | eleq2i 2722 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
4 | dvdsdivcl 15085 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
5 | 3, 4 | sylan2b 491 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
6 | 5, 2 | syl6eleqr 2741 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ 𝐴) |
7 | 2 | eleq2i 2722 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
8 | dvdsdivcl 15085 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
9 | 7, 8 | sylan2b 491 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
10 | 9, 2 | syl6eleqr 2741 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ 𝐴) |
11 | ssrab2 3720 | . . . . . . 7 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
12 | 2, 11 | eqsstri 3668 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ |
13 | 12 | sseli 3632 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ) |
14 | 12 | sseli 3632 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ) |
15 | 13, 14 | anim12i 589 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) |
16 | nncn 11066 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ) |
18 | nncn 11066 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
19 | 18 | ad2antrl 764 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ) |
20 | nncn 11066 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
21 | 20 | ad2antll 765 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ) |
22 | nnne0 11091 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
23 | 22 | ad2antll 765 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ≠ 0) |
24 | 17, 19, 21, 23 | divmul3d 10873 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ 𝑁 = (𝑦 · 𝑧))) |
25 | nnne0 11091 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
26 | 25 | ad2antrl 764 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ≠ 0) |
27 | 17, 21, 19, 26 | divmul2d 10872 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧 ↔ 𝑁 = (𝑦 · 𝑧))) |
28 | 24, 27 | bitr4d 271 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
29 | 15, 28 | sylan2 490 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
30 | eqcom 2658 | . . 3 ⊢ (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦) | |
31 | eqcom 2658 | . . 3 ⊢ (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧) | |
32 | 29, 30, 31 | 3bitr4g 303 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦))) |
33 | 1, 6, 10, 32 | f1o2d 6929 | 1 ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 {crab 2945 class class class wbr 4685 ↦ cmpt 4762 –1-1-onto→wf1o 5925 (class class class)co 6690 ℂcc 9972 0cc0 9974 · cmul 9979 / cdiv 10722 ℕcn 11058 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-z 11416 df-dvds 15028 |
This theorem is referenced by: phisum 15542 fsumdvdscom 24956 |
Copyright terms: Public domain | W3C validator |