Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsabseq Structured version   Visualization version   GIF version

Theorem dvdsabseq 15082
 Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 15032 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpr 476 . . . . . 6 ((𝑀𝑁𝑁𝑀) → 𝑁𝑀)
3 breq1 4688 . . . . . . . 8 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
4 0dvds 15049 . . . . . . . . . 10 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
54adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀𝑀 = 0))
6 zcn 11420 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76abs00ad 14074 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((abs‘𝑀) = 0 ↔ 𝑀 = 0))
87bicomd 213 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
98adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
105, 9bitrd 268 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀 ↔ (abs‘𝑀) = 0))
113, 10sylan9bb 736 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = 0))
12 fveq2 6229 . . . . . . . . . 10 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
13 abs0 14069 . . . . . . . . . 10 (abs‘0) = 0
1412, 13syl6eq 2701 . . . . . . . . 9 (𝑁 = 0 → (abs‘𝑁) = 0)
1514adantr 480 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0)
1615eqeq2d 2661 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0))
1711, 16bitr4d 271 . . . . . 6 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = (abs‘𝑁)))
182, 17syl5ib 234 . . . . 5 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁)))
1918expd 451 . . . 4 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
20 simprl 809 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
21 simpr 476 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2221adantl 481 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
23 neqne 2831 . . . . . . 7 𝑁 = 0 → 𝑁 ≠ 0)
2423adantr 480 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0)
25 dvdsleabs2 15081 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
2620, 22, 24, 25syl3anc 1366 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
27 simpr 476 . . . . . . . . . . 11 ((𝑁𝑀𝑀𝑁) → 𝑀𝑁)
28 breq1 4688 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
29 0dvds 15049 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
30 eqcom 2658 . . . . . . . . . . . . . . . 16 ((abs‘𝑁) = 0 ↔ 0 = (abs‘𝑁))
31 zcn 11420 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3231abs00ad 14074 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
3330, 32syl5rbbr 275 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁)))
3429, 33bitrd 268 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3534adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3628, 35sylan9bb 736 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ 0 = (abs‘𝑁)))
37 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3837, 13syl6eq 2701 . . . . . . . . . . . . . 14 (𝑀 = 0 → (abs‘𝑀) = 0)
3938adantr 480 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0)
4039eqeq1d 2653 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁)))
4136, 40bitr4d 271 . . . . . . . . . . 11 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ (abs‘𝑀) = (abs‘𝑁)))
4227, 41syl5ib 234 . . . . . . . . . 10 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → (abs‘𝑀) = (abs‘𝑁)))
4342a1dd 50 . . . . . . . . 9 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
4443expcomd 453 . . . . . . . 8 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
4521adantl 481 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
46 simprl 809 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
47 neqne 2831 . . . . . . . . . . . 12 𝑀 = 0 → 𝑀 ≠ 0)
4847adantr 480 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0)
49 dvdsleabs2 15081 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
5045, 46, 48, 49syl3anc 1366 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
51 eqcom 2658 . . . . . . . . . . . . . 14 ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑁) = (abs‘𝑀))
5231abscld 14219 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
536abscld 14219 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℝ)
54 letri3 10161 . . . . . . . . . . . . . . 15 (((abs‘𝑁) ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5552, 53, 54syl2anr 494 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5651, 55syl5bb 272 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = (abs‘𝑁) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5756biimprd 238 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)))
5857expd 451 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
5958adantl 481 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6050, 59syld 47 . . . . . . . . 9 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6160a1d 25 . . . . . . . 8 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6244, 61pm2.61ian 848 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6362com34 91 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
6463adantl 481 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
6526, 64mpdd 43 . . . 4 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
6619, 65pm2.61ian 848 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
671, 66mpcom 38 . 2 (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))
6867imp 444 1 ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685  ‘cfv 5926  ℝcr 9973  0cc0 9974   ≤ cle 10113  ℤcz 11415  abscabs 14018   ∥ cdvds 15027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028 This theorem is referenced by:  dvdseq  15083
 Copyright terms: Public domain W3C validator