![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvds1 | Structured version Visualization version GIF version |
Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.) |
Ref | Expression |
---|---|
dvds1 | ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 ∈ ℕ0) | |
2 | 1nn0 11346 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 1 ∈ ℕ0) |
4 | simpr 476 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 ∥ 1) | |
5 | nn0z 11438 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
6 | 1dvds 15043 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 1 ∥ 𝑀) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 1 ∥ 𝑀) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 1 ∥ 𝑀) |
9 | dvdseq 15083 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝑀 ∥ 1 ∧ 1 ∥ 𝑀)) → 𝑀 = 1) | |
10 | 1, 3, 4, 8, 9 | syl22anc 1367 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1) → 𝑀 = 1) |
11 | 10 | ex 449 | . 2 ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 → 𝑀 = 1)) |
12 | id 22 | . . 3 ⊢ (𝑀 = 1 → 𝑀 = 1) | |
13 | 1z 11445 | . . . 4 ⊢ 1 ∈ ℤ | |
14 | iddvds 15042 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∥ 1) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ 1 ∥ 1 |
16 | 12, 15 | syl6eqbr 4724 | . 2 ⊢ (𝑀 = 1 → 𝑀 ∥ 1) |
17 | 11, 16 | impbid1 215 | 1 ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 1c1 9975 ℕ0cn0 11330 ℤcz 11415 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 |
This theorem is referenced by: rpmulgcd2 15417 rpmul 15420 1nprm 15439 nprmdvds1 15465 expnprm 15653 ablfacrp 18511 chrnzr 19926 znunit 19960 znrrg 19962 lighneallem3 41849 |
Copyright terms: Public domain | W3C validator |