![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvds0 | Structured version Visualization version GIF version |
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds0 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11566 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mul02d 10418 | . 2 ⊢ (𝑁 ∈ ℤ → (0 · 𝑁) = 0) |
3 | 0z 11572 | . . 3 ⊢ 0 ∈ ℤ | |
4 | dvds0lem 15186 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0) | |
5 | 4 | ex 449 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
6 | 3, 3, 5 | mp3an13 1556 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
7 | 2, 6 | mpd 15 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 class class class wbr 4796 (class class class)co 6805 0cc0 10120 · cmul 10125 ℤcz 11561 ∥ cdvds 15174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-po 5179 df-so 5180 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-ltxr 10263 df-neg 10453 df-z 11562 df-dvds 15175 |
This theorem is referenced by: 0dvds 15196 fsumdvds 15224 alzdvds 15236 fzo0dvdseq 15239 z0even 15297 bitsfzo 15351 bitsmod 15352 bitsinv1lem 15357 sadadd3 15377 gcddvds 15419 gcd0id 15434 bezoutlem4 15453 dfgcd2 15457 dvdssq 15474 dvdslcm 15505 lcmdvds 15515 dvdslcmf 15538 mulgcddvds 15563 odzdvds 15694 pcdvdsb 15767 pcz 15779 sylow2blem3 18229 odadd1 18443 odadd2 18444 cyggex2 18490 ppiublem2 25119 lgsdir2lem3 25243 lgsne0 25251 lgsqr 25267 eupth2lem3lem3 27374 eupth2lemb 27381 nn0prpw 32616 poimirlem25 33739 poimirlem26 33740 poimirlem27 33741 poimirlem28 33742 congid 38032 jm2.18 38049 jm2.19 38054 jm2.22 38056 jm2.23 38057 etransclem24 40970 etransclem25 40971 etransclem28 40974 |
Copyright terms: Public domain | W3C validator |