![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivf | Structured version Visualization version GIF version |
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvdivf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdivf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvdivf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
dvdivf.fdv | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvdivf.gdv | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
Ref | Expression |
---|---|
dvdivf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) = ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺 ∘𝑓 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvdivf.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | 2 | ffvelrnda 6522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
4 | dvfg 23869 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
6 | dvdivf.fdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
7 | 6 | feq2d 6192 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
8 | 5, 7 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
9 | 8 | ffvelrnda 6522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
10 | 2 | feqmptd 6411 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
11 | 10 | oveq2d 6829 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥)))) |
12 | 8 | feqmptd 6411 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
13 | 11, 12 | eqtr3d 2796 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
14 | dvdivf.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
15 | 14 | ffvelrnda 6522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ (ℂ ∖ {0})) |
16 | dvfg 23869 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
17 | 1, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
18 | dvdivf.gdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
19 | 18 | feq2d 6192 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
20 | 17, 19 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
21 | 20 | ffvelrnda 6522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ) |
22 | 14 | feqmptd 6411 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
23 | 22 | oveq2d 6829 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥)))) |
24 | 20 | feqmptd 6411 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
25 | 23, 24 | eqtr3d 2796 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
26 | 1, 3, 9, 13, 15, 21, 25 | dvmptdiv 23936 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
27 | ovex 6841 | . . . . . 6 ⊢ (𝑆 D 𝐹) ∈ V | |
28 | 27 | dmex 7264 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ∈ V |
29 | 6, 28 | syl6eqelr 2848 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
30 | 29, 3, 15, 10, 22 | offval2 7079 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 / 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
31 | 30 | oveq2d 6829 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
32 | ovexd 6843 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) ∈ V) | |
33 | 15 | eldifad 3727 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
34 | 33 | sqcld 13200 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) ∈ ℂ) |
35 | 9, 33 | mulcld 10252 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
36 | 21, 3 | mulcld 10252 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
37 | 29, 9, 33, 12, 22 | offval2 7079 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
38 | 29, 21, 3, 24, 10 | offval2 7079 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
39 | 29, 35, 36, 37, 38 | offval2 7079 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
40 | 29, 15, 15, 22, 22 | offval2 7079 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
41 | 33 | sqvald 13199 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
42 | 41 | mpteq2dva 4896 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2)) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
43 | 40, 42 | eqtr4d 2797 | . . 3 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2))) |
44 | 29, 32, 34, 39, 43 | offval2 7079 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺 ∘𝑓 · 𝐺)) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
45 | 26, 31, 44 | 3eqtr4d 2804 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) = ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺 ∘𝑓 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∖ cdif 3712 {csn 4321 {cpr 4323 ↦ cmpt 4881 dom cdm 5266 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ∘𝑓 cof 7060 ℂcc 10126 ℝcr 10127 0cc0 10128 · cmul 10133 − cmin 10458 / cdiv 10876 2c2 11262 ↑cexp 13054 D cdv 23826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-icc 12375 df-fz 12520 df-fzo 12660 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-lp 21142 df-perf 21143 df-cn 21233 df-cnp 21234 df-t1 21320 df-haus 21321 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-xms 22326 df-ms 22327 df-tms 22328 df-cncf 22882 df-limc 23829 df-dv 23830 |
This theorem is referenced by: dvdivcncf 40645 |
Copyright terms: Public domain | W3C validator |