![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivcncf | Structured version Visualization version GIF version |
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvdivcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdivcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvdivcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
dvdivcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
dvdivcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
dvdivcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvdivcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvdivcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
4 | dvdivcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
5 | cncff 22743 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
6 | fdm 6089 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
8 | dvdivcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
9 | cncff 22743 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
10 | fdm 6089 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
12 | 1, 2, 3, 7, 11 | dvdivf 40455 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) = ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺 ∘𝑓 · 𝐺))) |
13 | ax-resscn 10031 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
14 | sseq1 3659 | . . . . . . . . 9 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
15 | 13, 14 | mpbiri 248 | . . . . . . . 8 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
16 | eqimss 3690 | . . . . . . . 8 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
18 | elpri 4230 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
20 | pm3.44 532 | . . . . . . 7 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
21 | 17, 19, 20 | mpsyl 68 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
22 | difssd 3771 | . . . . . . 7 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
23 | 3, 22 | fssd 6095 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
24 | dvbsss 23711 | . . . . . . 7 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
25 | 7, 24 | syl6eqssr 3689 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
26 | dvcn 23729 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
27 | 21, 23, 25, 11, 26 | syl31anc 1369 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
28 | 4, 27 | mulcncff 40399 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∈ (𝑋–cn→ℂ)) |
29 | dvcn 23729 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
30 | 21, 2, 25, 7, 29 | syl31anc 1369 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
31 | 8, 30 | mulcncff 40399 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) ∈ (𝑋–cn→ℂ)) |
32 | 28, 31 | subcncff 40411 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∈ (𝑋–cn→ℂ)) |
33 | eldifi 3765 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
35 | eldifi 3765 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
36 | 35 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
37 | 34, 36 | mulcld 10098 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
38 | eldifsni 4353 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
39 | 38 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
40 | eldifsni 4353 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
41 | 40 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
42 | 34, 36, 39, 41 | mulne0d 10717 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
43 | eldifsn 4350 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
44 | 37, 42, 43 | sylanbrc 699 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
46 | 1, 25 | ssexd 4838 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
47 | inidm 3855 | . . . . 5 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
48 | 45, 3, 3, 46, 46, 47 | off 6954 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0})) |
49 | 27, 27 | mulcncff 40399 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐺) ∈ (𝑋–cn→ℂ)) |
50 | cncffvrn 22748 | . . . . 5 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺 ∘𝑓 · 𝐺) ∈ (𝑋–cn→ℂ)) → ((𝐺 ∘𝑓 · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0}))) | |
51 | 22, 49, 50 | syl2anc 694 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘𝑓 · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0}))) |
52 | 48, 51 | mpbird 247 | . . 3 ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
53 | 32, 52 | divcncff 40422 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺 ∘𝑓 · 𝐺)) ∈ (𝑋–cn→ℂ)) |
54 | 12, 53 | eqeltrd 2730 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 {cpr 4212 dom cdm 5143 ⟶wf 5922 (class class class)co 6690 ∘𝑓 cof 6937 ℂcc 9972 ℝcr 9973 0cc0 9974 · cmul 9979 − cmin 10304 / cdiv 10722 –cn→ccncf 22726 D cdv 23672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-t1 21166 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-limc 23675 df-dv 23676 |
This theorem is referenced by: fourierdlem58 40699 fourierdlem59 40700 |
Copyright terms: Public domain | W3C validator |