Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Structured version   Visualization version   GIF version

Theorem dvconstbi 39053
Description: The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 23899 and dveq0 23982. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstbi.y (𝜑𝑌:𝑆⟶ℂ)
dvconstbi.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
dvconstbi (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Distinct variable groups:   𝑆,𝑐   𝑌,𝑐
Allowed substitution hint:   𝜑(𝑐)

Proof of Theorem dvconstbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstbi.y . . . . . . 7 (𝜑𝑌:𝑆⟶ℂ)
2 dvconstbi.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
3 elpri 4342 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
5 0re 10252 . . . . . . . . . 10 0 ∈ ℝ
6 eleq2 2828 . . . . . . . . . 10 (𝑆 = ℝ → (0 ∈ 𝑆 ↔ 0 ∈ ℝ))
75, 6mpbiri 248 . . . . . . . . 9 (𝑆 = ℝ → 0 ∈ 𝑆)
8 0cn 10244 . . . . . . . . . 10 0 ∈ ℂ
9 eleq2 2828 . . . . . . . . . 10 (𝑆 = ℂ → (0 ∈ 𝑆 ↔ 0 ∈ ℂ))
108, 9mpbiri 248 . . . . . . . . 9 (𝑆 = ℂ → 0 ∈ 𝑆)
117, 10jaoi 393 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈ 𝑆)
124, 11syl 17 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
13 ffvelrn 6521 . . . . . . 7 ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ)
141, 12, 13syl2anc 696 . . . . . 6 (𝜑 → (𝑌‘0) ∈ ℂ)
1514adantr 472 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ)
16 ffn 6206 . . . . . . . 8 (𝑌:𝑆⟶ℂ → 𝑌 Fn 𝑆)
171, 16syl 17 . . . . . . 7 (𝜑𝑌 Fn 𝑆)
1817adantr 472 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆)
19 fvex 6363 . . . . . . 7 (𝑌‘0) ∈ V
20 fnconstg 6254 . . . . . . 7 ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2119, 20mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2219fvconst2 6634 . . . . . . . 8 (𝑦𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
2322adantl 473 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
24 eqid 2760 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
252, 24sblpnf 39029 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2612, 25mpdan 705 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2726eleq2d 2825 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦𝑆))
2827biimpar 503 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
2912, 26eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
302adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ})
31 ssid 3765 . . . . . . . . . . . . . . . . . . 19 𝑆𝑆
3231a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆𝑆)
331adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ)
3412adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆)
35 pnfxr 10304 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈ ℝ*)
37 eqid 2760 . . . . . . . . . . . . . . . . . 18 (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)
3826adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
39 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
4039adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆)
4138, 40eqtr4d 2797 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌))
42 eqimss 3798 . . . . . . . . . . . . . . . . . . 19 ((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
445a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ ℝ)
4526eleq2d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥𝑆))
4645biimpa 502 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
47463adant2 1126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
48 fveq1 6352 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥))
49 c0ex 10246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ V
5049fvconst2 6634 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑆 → ((𝑆 × {0})‘𝑥) = 0)
5148, 50sylan9eq 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0)
5251, 8syl6eqel 2847 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ)
5352abscld 14394 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ)
5451abs00bd 14250 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0)
55 eqle 10351 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5653, 54, 55syl2anc 696 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
57563adant1 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5847, 57syld3an3 1516 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
59583expa 1112 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
6030, 24, 32, 33, 34, 36, 37, 43, 44, 59dvlip2 23977 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6129, 60sylanr1 687 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
62613impdi 1444 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6328, 62syl3an3 1170 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
64633expa 1112 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
65643impdi 1444 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
66 recnprss 23887 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
672, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ ℂ)
6867sseld 3743 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
69 subcl 10492 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − 𝑦) ∈ ℂ)
7069abscld 14394 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ)
718, 70mpan 708 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) ∈ ℝ)
7268, 71syl6 35 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦𝑆 → (abs‘(0 − 𝑦)) ∈ ℝ))
7372imp 444 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℝ)
7473recnd 10280 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℂ)
7574mul02d 10446 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
76753adant2 1126 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
7765, 76breqtrd 4830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0)
78 ffvelrn 6521 . . . . . . . . . . . . . . . . . . 19 ((𝑌:𝑆⟶ℂ ∧ 𝑦𝑆) → (𝑌𝑦) ∈ ℂ)
7913, 78anim12dan 918 . . . . . . . . . . . . . . . . . 18 ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
801, 79sylan 489 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
81803impb 1108 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 ∈ 𝑆𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
8212, 81syl3an2 1168 . . . . . . . . . . . . . . 15 ((𝜑𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
83823anidm12 1530 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
84 subcl 10492 . . . . . . . . . . . . . 14 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8583, 84syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8685absge0d 14402 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
87863adant2 1126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
8885abscld 14394 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ)
89 letri3 10335 . . . . . . . . . . . . 13 (((abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9088, 5, 89sylancl 697 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
91903adant2 1126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9277, 87, 91mpbir2and 995 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) = 0)
9385abs00ad 14249 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
94933adant2 1126 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
9592, 94mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) = 0)
96 subeq0 10519 . . . . . . . . . . 11 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9783, 96syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
98973adant2 1126 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9995, 98mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
100993expa 1112 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
10123, 100eqtr2d 2795 . . . . . 6 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦))
10218, 21, 101eqfnfvd 6478 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)}))
103 sneq 4331 . . . . . . . 8 (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)})
104103xpeq2d 5296 . . . . . . 7 (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)}))
105104eqeq2d 2770 . . . . . 6 (𝑥 = (𝑌‘0) → (𝑌 = (𝑆 × {𝑥}) ↔ 𝑌 = (𝑆 × {(𝑌‘0)})))
106105rspcev 3449 . . . . 5 (((𝑌‘0) ∈ ℂ ∧ 𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
10715, 102, 106syl2anc 696 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
108107ex 449 . . 3 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
109 oveq2 6822 . . . . . 6 (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
1101093ad2ant3 1130 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
111 dvsconst 39049 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1122, 111sylan 489 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1131123adant3 1127 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
114110, 113eqtrd 2794 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0}))
115114rexlimdv3a 3171 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0})))
116108, 115impbid 202 . 2 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
117 sneq 4331 . . . . 5 (𝑐 = 𝑥 → {𝑐} = {𝑥})
118117xpeq2d 5296 . . . 4 (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥}))
119118eqeq2d 2770 . . 3 (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥})))
120119cbvrexv 3311 . 2 (∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
121116, 120syl6bbr 278 1 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051  Vcvv 3340  wss 3715  {csn 4321  {cpr 4323   class class class wbr 4804   × cxp 5264  dom cdm 5266  cres 5268  ccom 5270   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   · cmul 10153  +∞cpnf 10283  *cxr 10285  cle 10287  cmin 10478  abscabs 14193  ballcbl 19955   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850
This theorem is referenced by:  expgrowth  39054
  Copyright terms: Public domain W3C validator