MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvre Structured version   Visualization version   GIF version

Theorem dvcnvre 24001
Description: The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then 𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
Assertion
Ref Expression
dvcnvre (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem dvcnvre
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21tgioo2 22827 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 reelprrecn 10240 . . 3 ℝ ∈ {ℝ, ℂ}
43a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
5 retop 22786 . . . . 5 (topGen‘ran (,)) ∈ Top
6 dvcnvre.1 . . . . . . 7 (𝜑𝐹:𝑋1-1-onto𝑌)
7 f1ofo 6306 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
8 forn 6280 . . . . . . 7 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
96, 7, 83syl 18 . . . . . 6 (𝜑 → ran 𝐹 = 𝑌)
10 dvcnvre.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋cn→ℝ))
11 cncff 22917 . . . . . . 7 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
12 frn 6214 . . . . . . 7 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
149, 13eqsstr3d 3781 . . . . 5 (𝜑𝑌 ⊆ ℝ)
15 uniretop 22787 . . . . . 6 ℝ = (topGen‘ran (,))
1615ntrss2 21083 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
175, 14, 16sylancr 698 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
18 f1ocnvfv2 6697 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
196, 18sylan 489 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 f1ocnv 6311 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6299 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
226, 20, 213syl 18 . . . . . . . . . . 11 (𝜑𝐹:𝑌𝑋)
2322ffvelrnda 6523 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
24 dvcnvre.d . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
25 dvbsss 23885 . . . . . . . . . . . . . . . 16 dom (ℝ D 𝐹) ⊆ ℝ
2625a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
2724, 26eqsstr3d 3781 . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℝ)
2815ntrss2 21083 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
295, 27, 28sylancr 698 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
30 ax-resscn 10205 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
3210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℝ)
33 fss 6217 . . . . . . . . . . . . . . . 16 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
3432, 30, 33sylancl 697 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
3531, 34, 27, 2, 1dvbssntr 23883 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3624, 35eqsstr3d 3781 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3729, 36eqssd 3761 . . . . . . . . . . . 12 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)
3815isopn3 21092 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
395, 27, 38sylancr 698 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
4037, 39mpbird 247 . . . . . . . . . . 11 (𝜑𝑋 ∈ (topGen‘ran (,)))
41 eqid 2760 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4241rexmet 22815 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
43 eqid 2760 . . . . . . . . . . . . . 14 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4441, 43tgioo 22820 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4544mopni2 22519 . . . . . . . . . . . 12 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4642, 45mp3an1 1560 . . . . . . . . . . 11 ((𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4740, 46sylan 489 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4823, 47syldan 488 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4910ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋cn→ℝ))
5024ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋)
51 dvcnvre.z . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
5251ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐹))
536ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋1-1-onto𝑌)
5423adantr 472 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ 𝑋)
55 rphalfcl 12071 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
5655ad2antrl 766 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ+)
5727ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ)
5857, 54sseldd 3745 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ ℝ)
5956rpred 12085 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ)
6058, 59resubcld 10670 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
6158, 59readdcld 10281 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
62 elicc2 12451 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6360, 61, 62syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6463biimpa 502 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2))))
6564simp1d 1137 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ)
6658adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝐹𝑥) ∈ ℝ)
67 simplrl 819 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
6867rpred 12085 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ)
6966, 68resubcld 10670 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ)
7060adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
7167, 55syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
7271rpred 12085 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ)
73 rphalflt 12073 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
7467, 73syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟)
7572, 68, 66, 74ltsub2dd 10852 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < ((𝐹𝑥) − (𝑟 / 2)))
7664simp2d 1138 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦)
7769, 70, 65, 75, 76ltletrd 10409 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < 𝑦)
7861adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
7966, 68readdcld 10281 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ)
8064simp3d 1139 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))
8172, 68, 66, 74ltadd2dd 10408 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) < ((𝐹𝑥) + 𝑟))
8265, 78, 79, 80, 81lelttrd 10407 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 < ((𝐹𝑥) + 𝑟))
8369rexrd 10301 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ*)
8479rexrd 10301 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ*)
85 elioo2 12429 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) − 𝑟) ∈ ℝ* ∧ ((𝐹𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8683, 84, 85syl2anc 696 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8765, 77, 82, 86mpbir3and 1428 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
8887ex 449 . . . . . . . . . . . . 13 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟))))
8988ssrdv 3750 . . . . . . . . . . . 12 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
90 rpre 12052 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
9190ad2antrl 766 . . . . . . . . . . . . 13 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ)
9241bl2ioo 22816 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9358, 91, 92syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9489, 93sseqtr4d 3783 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
95 simprr 813 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
9694, 95sstrd 3754 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ 𝑋)
97 eqid 2760 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
98 eqid 2760 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
99 eqid 2760 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝑌) = ((TopOpen‘ℂfld) ↾t 𝑌)
10049, 50, 52, 53, 54, 56, 96, 97, 1, 98, 99dvcnvrelem2 24000 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
10148, 100rexlimddv 3173 . . . . . . . 8 ((𝜑𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
102101simpld 477 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10319, 102eqeltrrd 2840 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌))
104103ex 449 . . . . 5 (𝜑 → (𝑥𝑌𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌)))
105104ssrdv 3750 . . . 4 (𝜑𝑌 ⊆ ((int‘(topGen‘ran (,)))‘𝑌))
10617, 105eqssd 3761 . . 3 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)
10715isopn3 21092 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
1085, 14, 107sylancr 698 . . 3 (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
109106, 108mpbird 247 . 2 (𝜑𝑌 ∈ (topGen‘ran (,)))
110101simprd 482 . . . . . 6 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))))
11119fveq2d 6357 . . . . . 6 ((𝜑𝑥𝑌) → ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))) = ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
112110, 111eleqtrd 2841 . . . . 5 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
113112ralrimiva 3104 . . . 4 (𝜑 → ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
1141cnfldtopon 22807 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11514, 30syl6ss 3756 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
116 resttopon 21187 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
117114, 115, 116sylancr 698 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
11827, 30syl6ss 3756 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
119 resttopon 21187 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
120114, 118, 119sylancr 698 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
121 cncnp 21306 . . . . 5 ((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
122117, 120, 121syl2anc 696 . . . 4 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
12322, 113, 122mpbir2and 995 . . 3 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
1241, 99, 98cncfcn 22933 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
125115, 118, 124syl2anc 696 . . 3 (𝜑 → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
126123, 125eleqtrrd 2842 . 2 (𝜑𝐹 ∈ (𝑌cn𝑋))
1271, 2, 4, 109, 6, 126, 24, 51dvcnv 23959 1 (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  wss 3715  {cpr 4323   class class class wbr 4804  cmpt 4881   × cxp 5264  ccnv 5265  dom cdm 5266  ran crn 5267  cres 5268  ccom 5270  wf 6045  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151  *cxr 10285   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  2c2 11282  +crp 12045  (,)cioo 12388  [,]cicc 12391  abscabs 14193  t crest 16303  TopOpenctopn 16304  topGenctg 16320  ∞Metcxmt 19953  ballcbl 19955  MetOpencmopn 19958  fldccnfld 19968  Topctop 20920  TopOnctopon 20937  intcnt 21043   Cn ccn 21250   CnP ccnp 21251  cnccncf 22900   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850
This theorem is referenced by:  dvrelog  24603
  Copyright terms: Public domain W3C validator