![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvbssntr | Structured version Visualization version GIF version |
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
dvbssntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvbssntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dvbssntr | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvcl.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | dvcl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | dvbssntr.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
5 | dvbssntr.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
6 | 4, 5 | dvfval 23706 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
7 | 1, 2, 3, 6 | syl3anc 1366 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
8 | 7 | simprd 478 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ)) |
9 | dmss 5355 | . . 3 ⊢ ((𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ) → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) |
11 | dmxpss 5600 | . 2 ⊢ dom (((int‘𝐽)‘𝐴) × ℂ) ⊆ ((int‘𝐽)‘𝐴) | |
12 | 10, 11 | syl6ss 3648 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 ∪ ciun 4552 ↦ cmpt 4762 × cxp 5141 dom cdm 5143 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 − cmin 10304 / cdiv 10722 ↾t crest 16128 TopOpenctopn 16129 ℂfldccnfld 19794 intcnt 20869 limℂ climc 23671 D cdv 23672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fi 8358 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-mulr 16002 df-starv 16003 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-rest 16130 df-topn 16131 df-topgen 16151 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cnp 21080 df-xms 22172 df-ms 22173 df-limc 23675 df-dv 23676 |
This theorem is referenced by: dvbss 23710 dvnres 23739 dvcmulf 23753 dvcjbr 23757 dvmptcmul 23772 dvcnvre 23827 ftc1cn 23851 taylthlem1 24172 taylthlem2 24173 ulmdvlem3 24201 ftc1cnnc 33614 |
Copyright terms: Public domain | W3C validator |