Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvalveclem Structured version   Visualization version   GIF version

Theorem dvalveclem 36631
Description: Lemma for dvalvec 36632. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvalveclem.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvalveclem.a + = (+g𝑈)
dvalveclem.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvalveclem.d 𝐷 = (Scalar‘𝑈)
dvalveclem.b 𝐵 = (Base‘𝐾)
dvalveclem.p = (+g𝐷)
dvalveclem.m × = (.r𝐷)
dvalveclem.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvalveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvalveclem
Dummy variables 𝑡 𝑓 𝑎 𝑏 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvalveclem.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvalvec.v . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
4 eqid 2651 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
51, 2, 3, 4dvavbase 36618 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
65eqcomd 2657 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝑈))
7 dvalveclem.a . . . 4 + = (+g𝑈)
87a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
9 dvalveclem.d . . . 4 𝐷 = (Scalar‘𝑈)
109a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
11 dvalveclem.s . . . 4 · = ( ·𝑠𝑈)
1211a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
13 dvalveclem.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2651 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 13, 3, 9, 14dvabase 36612 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2657 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvalveclem.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvalveclem.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
211, 2, 13tendoidcl 36374 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
2221, 16eleqtrd 2732 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
23 dvalveclem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
24 eqid 2651 . . . . . . . 8 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2523, 1, 2, 13, 24tendo1ne0 36433 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (𝑓𝑇 ↦ ( I ↾ 𝐵)))
26 eqid 2651 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
271, 26, 3, 9dvasca 36611 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2827fveq2d 6233 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (0g‘((EDRing‘𝐾)‘𝑊)))
29 eqid 2651 . . . . . . . . 9 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3023, 1, 2, 26, 24, 29erng0g 36599 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3128, 30eqtrd 2685 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
3225, 31neeqtrrd 2897 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ (0g𝐷))
3321, 21jca 553 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸))
341, 2, 13, 3, 9, 19dvamulr 36617 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
3533, 34mpdan 703 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)))
36 f1oi 6212 . . . . . . . 8 ( I ↾ 𝑇):𝑇1-1-onto𝑇
37 f1of 6175 . . . . . . . 8 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
38 fcoi2 6117 . . . . . . . 8 (( I ↾ 𝑇):𝑇𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇))
3936, 37, 38mp2b 10 . . . . . . 7 (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)
4035, 39syl6eq 2701 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇))
4122, 32, 403jca 1261 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)))
421, 26erngdv 36598 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
4327, 42eqeltrd 2730 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
44 eqid 2651 . . . . . . 7 (0g𝐷) = (0g𝐷)
45 eqid 2651 . . . . . . 7 (1r𝐷) = (1r𝐷)
4614, 19, 44, 45drngid2 18811 . . . . . 6 (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4743, 46syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g𝐷) ∧ (( I ↾ 𝑇) × ( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
4841, 47mpbid 222 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
4948eqcomd 2657 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
50 drngring 18802 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
5143, 50syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
521, 3dvaabl 36630 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
53 ablgrp 18244 . . . 4 (𝑈 ∈ Abel → 𝑈 ∈ Grp)
5452, 53syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
551, 2, 13, 3, 11dvavsca 36622 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
56553impb 1279 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) = (𝑠𝑡))
571, 2, 13tendocl 36372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠𝑡) ∈ 𝑇)
5856, 57eqeltrd 2730 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝑇) → (𝑠 · 𝑡) ∈ 𝑇)
591, 2, 13tendospdi1 36626 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠‘(𝑡𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
60 simpr1 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → 𝑠𝐸)
611, 2ltrnco 36324 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝑇𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
62613adant3r1 1295 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
6360, 62jca 553 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
641, 2, 13, 3, 11dvavsca 36622 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
6563, 64syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
66573adant3r3 1297 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑡) ∈ 𝑇)
671, 2, 13tendocl 36372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑓𝑇) → (𝑠𝑓) ∈ 𝑇)
68673adant3r2 1296 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
6966, 68jca 553 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇))
701, 2, 3, 7dvavadd 36620 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝑇 ∧ (𝑠𝑓) ∈ 𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7169, 70syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠𝑡) + (𝑠𝑓)) = ((𝑠𝑡) ∘ (𝑠𝑓)))
7259, 65, 713eqtr4d 2695 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
731, 2, 3, 7dvavadd 36620 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
74733adantr1 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑡 + 𝑓) = (𝑡𝑓))
7574oveq2d 6706 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = (𝑠 · (𝑡𝑓)))
76553adantr3 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑡) = (𝑠𝑡))
771, 2, 13, 3, 11dvavsca 36622 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
78773adantr2 1241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
7976, 78oveq12d 6708 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ((𝑠𝑡) + (𝑠𝑓)))
8072, 75, 793eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝑇𝑓𝑇)) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
811, 2, 13, 3, 9, 17dvaplusgv 36615 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡)‘𝑓) = ((𝑠𝑓) ∘ (𝑡𝑓)))
821, 2, 13, 3, 9, 17dvafplusg 36613 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
83823ad2ant1 1102 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
8483oveqd 6707 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) = (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡))
85 eqid 2651 . . . . . . . . 9 (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
861, 2, 13, 85tendoplcl 36386 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))𝑡) ∈ 𝐸)
8784, 86eqeltrd 2730 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 𝑡) ∈ 𝐸)
88873adant3r3 1297 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 𝑡) ∈ 𝐸)
89 simpr3 1089 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑓𝑇)
9088, 89jca 553 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) ∈ 𝐸𝑓𝑇))
911, 2, 13, 3, 11dvavsca 36622 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
9290, 91syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 𝑡)‘𝑓))
93773adantr2 1241 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · 𝑓) = (𝑠𝑓))
941, 2, 13, 3, 11dvavsca 36622 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
95943adantr1 1240 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡 · 𝑓) = (𝑡𝑓))
9693, 95oveq12d 6708 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) + (𝑡𝑓)))
97673adant3r2 1296 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑓) ∈ 𝑇)
981, 2, 13tendospcl 36624 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑓𝑇) → (𝑡𝑓) ∈ 𝑇)
99983adant3r1 1295 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑡𝑓) ∈ 𝑇)
10097, 99jca 553 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇))
1011, 2, 3, 7dvavadd 36620 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑓) ∈ 𝑇 ∧ (𝑡𝑓) ∈ 𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
102100, 101syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑓) + (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10396, 102eqtrd 2685 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
10481, 92, 1033eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1051, 2, 13tendospass 36625 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡)‘𝑓) = (𝑠‘(𝑡𝑓)))
1061, 13tendococl 36377 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
1071063adant3r3 1297 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝑡) ∈ 𝐸)
108107, 89jca 553 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) ∈ 𝐸𝑓𝑇))
1091, 2, 13, 3, 11dvavsca 36622 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
110108, 109syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = ((𝑠𝑡)‘𝑓))
111 simpr1 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → 𝑠𝐸)
112111, 99jca 553 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇))
1131, 2, 13, 3, 11dvavsca 36622 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑓) ∈ 𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
114112, 113syldan 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡𝑓)) = (𝑠‘(𝑡𝑓)))
115105, 110, 1143eqtr4d 2695 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠𝑡) · 𝑓) = (𝑠 · (𝑡𝑓)))
1161, 2, 13, 3, 9, 19dvamulr 36617 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1171163adantr3 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 × 𝑡) = (𝑠𝑡))
118117oveq1d 6705 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
11995oveq2d 6706 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · (𝑡𝑓)))
120115, 118, 1193eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓𝑇)) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
12121anim1i 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇))
1221, 2, 13, 3, 11dvavsca 36622 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝑇)) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
123121, 122syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = (( I ↾ 𝑇)‘𝑠))
124 fvresi 6480 . . . . 5 (𝑠𝑇 → (( I ↾ 𝑇)‘𝑠) = 𝑠)
125124adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇)‘𝑠) = 𝑠)
126123, 125eqtrd 2685 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝑇) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
1276, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126islmodd 18917 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
1289islvec 19152 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
129127, 43, 128sylanbrc 699 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cmpt 4762   I cid 5052  cres 5145  ccom 5147  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147  Grpcgrp 17469  Abelcabl 18240  1rcur 18547  Ringcrg 18593  DivRingcdr 18795  LModclmod 18911  LVecclvec 19150  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  TEndoctendo 36357  EDRingcedring 36358  DVecAcdveca 36607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lvec 19151  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tgrp 36348  df-tendo 36360  df-edring 36362  df-dveca 36608
This theorem is referenced by:  dvalvec  36632
  Copyright terms: Public domain W3C validator