Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafset Structured version   Visualization version   GIF version

Theorem dvafset 36806
 Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypothesis
Ref Expression
dvaset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dvafset (𝐾𝑉 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
Distinct variable groups:   𝑤,𝐻   𝑓,𝑔,𝑠,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   𝑉(𝑤,𝑓,𝑔,𝑠)

Proof of Theorem dvafset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3361 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6332 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dvaset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2822 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6332 . . . . . . . 8 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6334 . . . . . . 7 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76opeq2d 4544 . . . . . 6 (𝑘 = 𝐾 → ⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩)
8 eqidd 2771 . . . . . . . 8 (𝑘 = 𝐾 → (𝑓𝑔) = (𝑓𝑔))
96, 6, 8mpt2eq123dv 6863 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)))
109opeq2d 4544 . . . . . 6 (𝑘 = 𝐾 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩)
11 fveq2 6332 . . . . . . . 8 (𝑘 = 𝐾 → (EDRing‘𝑘) = (EDRing‘𝐾))
1211fveq1d 6334 . . . . . . 7 (𝑘 = 𝐾 → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑤))
1312opeq2d 4544 . . . . . 6 (𝑘 = 𝐾 → ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩ = ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩)
147, 10, 13tpeq123d 4417 . . . . 5 (𝑘 = 𝐾 → {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩})
15 fveq2 6332 . . . . . . . . 9 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
1615fveq1d 6334 . . . . . . . 8 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
17 eqidd 2771 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠𝑓) = (𝑠𝑓))
1816, 6, 17mpt2eq123dv 6863 . . . . . . 7 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓)))
1918opeq2d 4544 . . . . . 6 (𝑘 = 𝐾 → ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩ = ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩)
2019sneqd 4326 . . . . 5 (𝑘 = 𝐾 → {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩} = {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})
2114, 20uneq12d 3917 . . . 4 (𝑘 = 𝐾 → ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))
224, 21mpteq12dv 4865 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
23 df-dveca 36805 . . 3 DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})))
24 fvex 6342 . . . . 5 (LHyp‘𝐾) ∈ V
253, 24eqeltri 2845 . . . 4 𝐻 ∈ V
2625mptex 6629 . . 3 (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})) ∈ V
2722, 23, 26fvmpt 6424 . 2 (𝐾 ∈ V → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
281, 27syl 17 1 (𝐾𝑉 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ∪ cun 3719  {csn 4314  {ctp 4318  ⟨cop 4320   ↦ cmpt 4861   ∘ ccom 5253  ‘cfv 6031   ↦ cmpt2 6794  ndxcnx 16060  Basecbs 16063  +gcplusg 16148  Scalarcsca 16151   ·𝑠 cvsca 16152  LHypclh 35785  LTrncltrn 35902  TEndoctendo 36554  EDRingcedring 36555  DVecAcdveca 36804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-oprab 6796  df-mpt2 6797  df-dveca 36805 This theorem is referenced by:  dvaset  36807
 Copyright terms: Public domain W3C validator