Proof of Theorem dvacos
Step | Hyp | Ref
| Expression |
1 | | df-acos 24784 |
. . . . 5
⊢ arccos =
(𝑥 ∈ ℂ ↦
((π / 2) − (arcsin‘𝑥))) |
2 | 1 | reseq1i 5539 |
. . . 4
⊢ (arccos
↾ 𝐷) = ((𝑥 ∈ ℂ ↦ ((π /
2) − (arcsin‘𝑥))) ↾ 𝐷) |
3 | | dvasin.d |
. . . . . 6
⊢ 𝐷 = (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) |
4 | | difss 3872 |
. . . . . 6
⊢ (ℂ
∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆
ℂ |
5 | 3, 4 | eqsstri 3768 |
. . . . 5
⊢ 𝐷 ⊆
ℂ |
6 | | resmpt 5599 |
. . . . 5
⊢ (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((π /
2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((π / 2) −
(arcsin‘𝑥)))) |
7 | 5, 6 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ ℂ ↦ ((π /
2) − (arcsin‘𝑥))) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((π / 2) −
(arcsin‘𝑥))) |
8 | 2, 7 | eqtri 2774 |
. . 3
⊢ (arccos
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((π / 2) −
(arcsin‘𝑥))) |
9 | 8 | oveq2i 6816 |
. 2
⊢ (ℂ
D (arccos ↾ 𝐷)) =
(ℂ D (𝑥 ∈ 𝐷 ↦ ((π / 2) −
(arcsin‘𝑥)))) |
10 | | cnelprrecn 10213 |
. . . . 5
⊢ ℂ
∈ {ℝ, ℂ} |
11 | 10 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
12 | | halfpire 24407 |
. . . . . 6
⊢ (π /
2) ∈ ℝ |
13 | 12 | recni 10236 |
. . . . 5
⊢ (π /
2) ∈ ℂ |
14 | 13 | a1i 11 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (π / 2)
∈ ℂ) |
15 | | c0ex 10218 |
. . . . 5
⊢ 0 ∈
V |
16 | 15 | a1i 11 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → 0 ∈
V) |
17 | 13 | a1i 11 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (π / 2) ∈ ℂ) |
18 | 15 | a1i 11 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 0 ∈ V) |
19 | 13 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (π / 2) ∈ ℂ) |
20 | 11, 19 | dvmptc 23912 |
. . . . 5
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (π / 2))) = (𝑥 ∈ ℂ ↦ 0)) |
21 | 5 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝐷 ⊆
ℂ) |
22 | | eqid 2752 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
23 | 22 | cnfldtopon 22779 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
24 | 23 | toponunii 20915 |
. . . . . . . 8
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
25 | 24 | restid 16288 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
26 | 23, 25 | ax-mp 5 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
27 | 26 | eqcomi 2761 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
28 | 22 | recld2 22810 |
. . . . . . . . . 10
⊢ ℝ
∈ (Clsd‘(TopOpen‘ℂfld)) |
29 | | neg1rr 11309 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
30 | | iocmnfcld 22765 |
. . . . . . . . . . . 12
⊢ (-1
∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran
(,)))) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(-∞(,]-1) ∈ (Clsd‘(topGen‘ran
(,))) |
32 | 22 | tgioo2 22799 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
33 | 32 | fveq2i 6347 |
. . . . . . . . . . 11
⊢
(Clsd‘(topGen‘ran (,))) =
(Clsd‘((TopOpen‘ℂfld) ↾t
ℝ)) |
34 | 31, 33 | eleqtri 2829 |
. . . . . . . . . 10
⊢
(-∞(,]-1) ∈
(Clsd‘((TopOpen‘ℂfld) ↾t
ℝ)) |
35 | | restcldr 21172 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (-∞(,]-1)
∈ (Clsd‘((TopOpen‘ℂfld) ↾t
ℝ))) → (-∞(,]-1) ∈
(Clsd‘(TopOpen‘ℂfld))) |
36 | 28, 34, 35 | mp2an 710 |
. . . . . . . . 9
⊢
(-∞(,]-1) ∈
(Clsd‘(TopOpen‘ℂfld)) |
37 | | 1re 10223 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
38 | | icopnfcld 22764 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran
(,)))) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(1[,)+∞) ∈ (Clsd‘(topGen‘ran
(,))) |
40 | 39, 33 | eleqtri 2829 |
. . . . . . . . . 10
⊢
(1[,)+∞) ∈ (Clsd‘((TopOpen‘ℂfld)
↾t ℝ)) |
41 | | restcldr 21172 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞)
∈ (Clsd‘((TopOpen‘ℂfld) ↾t
ℝ))) → (1[,)+∞) ∈
(Clsd‘(TopOpen‘ℂfld))) |
42 | 28, 40, 41 | mp2an 710 |
. . . . . . . . 9
⊢
(1[,)+∞) ∈
(Clsd‘(TopOpen‘ℂfld)) |
43 | | uncld 21039 |
. . . . . . . . 9
⊢
(((-∞(,]-1) ∈
(Clsd‘(TopOpen‘ℂfld)) ∧ (1[,)+∞) ∈
(Clsd‘(TopOpen‘ℂfld))) → ((-∞(,]-1)
∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld))) |
44 | 36, 42, 43 | mp2an 710 |
. . . . . . . 8
⊢
((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld)) |
45 | 24 | cldopn 21029 |
. . . . . . . 8
⊢
(((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) ∈
(TopOpen‘ℂfld)) |
46 | 44, 45 | ax-mp 5 |
. . . . . . 7
⊢ (ℂ
∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈
(TopOpen‘ℂfld) |
47 | 3, 46 | eqeltri 2827 |
. . . . . 6
⊢ 𝐷 ∈
(TopOpen‘ℂfld) |
48 | 47 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝐷 ∈
(TopOpen‘ℂfld)) |
49 | 11, 17, 18, 20, 21, 27, 22, 48 | dvmptres 23917 |
. . . 4
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (π / 2))) =
(𝑥 ∈ 𝐷 ↦ 0)) |
50 | 5 | sseli 3732 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
51 | | asincl 24791 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
(arcsin‘𝑥) ∈
ℂ) |
52 | 50, 51 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (arcsin‘𝑥) ∈ ℂ) |
53 | 52 | adantl 473 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) →
(arcsin‘𝑥) ∈
ℂ) |
54 | | ovexd 6835 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (1 /
(√‘(1 − (𝑥↑2)))) ∈ V) |
55 | 3 | dvasin 33801 |
. . . . 5
⊢ (ℂ
D (arcsin ↾ 𝐷)) =
(𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 −
(𝑥↑2))))) |
56 | | asinf 24790 |
. . . . . . . 8
⊢
arcsin:ℂ⟶ℂ |
57 | 56 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ arcsin:ℂ⟶ℂ) |
58 | 57, 21 | feqresmpt 6404 |
. . . . . 6
⊢ (⊤
→ (arcsin ↾ 𝐷) =
(𝑥 ∈ 𝐷 ↦ (arcsin‘𝑥))) |
59 | 58 | oveq2d 6821 |
. . . . 5
⊢ (⊤
→ (ℂ D (arcsin ↾ 𝐷)) = (ℂ D (𝑥 ∈ 𝐷 ↦ (arcsin‘𝑥)))) |
60 | 55, 59 | syl5reqr 2801 |
. . . 4
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦
(arcsin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 −
(𝑥↑2)))))) |
61 | 11, 14, 16, 49, 53, 54, 60 | dvmptsub 23921 |
. . 3
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ ((π / 2)
− (arcsin‘𝑥))))
= (𝑥 ∈ 𝐷 ↦ (0 − (1 /
(√‘(1 − (𝑥↑2))))))) |
62 | 61 | trud 1634 |
. 2
⊢ (ℂ
D (𝑥 ∈ 𝐷 ↦ ((π / 2) −
(arcsin‘𝑥)))) =
(𝑥 ∈ 𝐷 ↦ (0 − (1 / (√‘(1
− (𝑥↑2)))))) |
63 | | df-neg 10453 |
. . . 4
⊢ -(1 /
(√‘(1 − (𝑥↑2)))) = (0 − (1 /
(√‘(1 − (𝑥↑2))))) |
64 | | 1cnd 10240 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 1 ∈ ℂ) |
65 | | ax-1cn 10178 |
. . . . . . 7
⊢ 1 ∈
ℂ |
66 | 50 | sqcld 13192 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (𝑥↑2) ∈ ℂ) |
67 | | subcl 10464 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 −
(𝑥↑2)) ∈
ℂ) |
68 | 65, 66, 67 | sylancr 698 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (1 − (𝑥↑2)) ∈ ℂ) |
69 | 68 | sqrtcld 14367 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (√‘(1 − (𝑥↑2))) ∈
ℂ) |
70 | | eldifn 3868 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) → ¬ 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
71 | 70, 3 | eleq2s 2849 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ¬ 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
72 | | mnfxr 10280 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
73 | 29 | rexri 10281 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ* |
74 | | mnflt 12142 |
. . . . . . . . . . . . 13
⊢ (-1
∈ ℝ → -∞ < -1) |
75 | 29, 74 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ -∞
< -1 |
76 | | ubioc1 12412 |
. . . . . . . . . . . 12
⊢
((-∞ ∈ ℝ* ∧ -1 ∈
ℝ* ∧ -∞ < -1) → -1 ∈
(-∞(,]-1)) |
77 | 72, 73, 75, 76 | mp3an 1565 |
. . . . . . . . . . 11
⊢ -1 ∈
(-∞(,]-1) |
78 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑥 = -1 → (𝑥 ∈ (-∞(,]-1) ↔ -1 ∈
(-∞(,]-1))) |
79 | 77, 78 | mpbiri 248 |
. . . . . . . . . 10
⊢ (𝑥 = -1 → 𝑥 ∈ (-∞(,]-1)) |
80 | 37 | rexri 10281 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ* |
81 | | pnfxr 10276 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
82 | | ltpnf 12139 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ → 1 < +∞) |
83 | 37, 82 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 1 <
+∞ |
84 | | lbico1 12413 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1
< +∞) → 1 ∈ (1[,)+∞)) |
85 | 80, 81, 83, 84 | mp3an 1565 |
. . . . . . . . . . 11
⊢ 1 ∈
(1[,)+∞) |
86 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 ∈ (1[,)+∞) ↔ 1 ∈
(1[,)+∞))) |
87 | 85, 86 | mpbiri 248 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → 𝑥 ∈ (1[,)+∞)) |
88 | 79, 87 | orim12i 539 |
. . . . . . . . 9
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈
(1[,)+∞))) |
89 | 88 | orcoms 403 |
. . . . . . . 8
⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈
(1[,)+∞))) |
90 | | elun 3888 |
. . . . . . . 8
⊢ (𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞)) ↔ (𝑥
∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞))) |
91 | 89, 90 | sylibr 224 |
. . . . . . 7
⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
92 | 71, 91 | nsyl 135 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ¬ (𝑥 = 1 ∨ 𝑥 = -1)) |
93 | | sq1 13144 |
. . . . . . . . . 10
⊢
(1↑2) = 1 |
94 | | 1cnd 10240 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → 1 ∈
ℂ) |
95 | | sqcl 13111 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (𝑥↑2) ∈
ℂ) |
96 | 95 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) ∈ ℂ) |
97 | 65, 95, 67 | sylancr 698 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (1
− (𝑥↑2)) ∈
ℂ) |
98 | 97 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) ∈
ℂ) |
99 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (√‘(1
− (𝑥↑2))) =
0) |
100 | 98, 99 | sqr00d 14371 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) = 0) |
101 | 94, 96, 100 | subeq0d 10584 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → 1 = (𝑥↑2)) |
102 | 93, 101 | syl5req 2799 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) = (1↑2)) |
103 | 102 | ex 449 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ →
((√‘(1 − (𝑥↑2))) = 0 → (𝑥↑2) = (1↑2))) |
104 | | sqeqor 13164 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑥↑2)
= (1↑2) ↔ (𝑥 = 1
∨ 𝑥 =
-1))) |
105 | 65, 104 | mpan2 709 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ((𝑥↑2) = (1↑2) ↔
(𝑥 = 1 ∨ 𝑥 = -1))) |
106 | 103, 105 | sylibd 229 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
((√‘(1 − (𝑥↑2))) = 0 → (𝑥 = 1 ∨ 𝑥 = -1))) |
107 | 106 | necon3bd 2938 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (¬
(𝑥 = 1 ∨ 𝑥 = -1) → (√‘(1
− (𝑥↑2))) ≠
0)) |
108 | 50, 92, 107 | sylc 65 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (√‘(1 − (𝑥↑2))) ≠
0) |
109 | 64, 69, 108 | divnegd 10998 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → -(1 / (√‘(1 −
(𝑥↑2)))) = (-1 /
(√‘(1 − (𝑥↑2))))) |
110 | 63, 109 | syl5eqr 2800 |
. . 3
⊢ (𝑥 ∈ 𝐷 → (0 − (1 / (√‘(1
− (𝑥↑2))))) =
(-1 / (√‘(1 − (𝑥↑2))))) |
111 | 110 | mpteq2ia 4884 |
. 2
⊢ (𝑥 ∈ 𝐷 ↦ (0 − (1 / (√‘(1
− (𝑥↑2)))))) =
(𝑥 ∈ 𝐷 ↦ (-1 / (√‘(1 −
(𝑥↑2))))) |
112 | 9, 62, 111 | 3eqtri 2778 |
1
⊢ (ℂ
D (arccos ↾ 𝐷)) =
(𝑥 ∈ 𝐷 ↦ (-1 / (√‘(1 −
(𝑥↑2))))) |