![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dva1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 36372. 𝐸 is the division ring base by erngdv 36802, and 𝑠‘𝐹 is the scalar product by dvavsca 36826. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
Ref | Expression |
---|---|
dva1dim.l | ⊢ ≤ = (le‘𝐾) |
dva1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dva1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dva1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dva1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dva1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dva1dim.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dva1dim.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dva1dim.e | . . . . . . . . . 10 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendocl 36576 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
5 | dva1dim.l | . . . . . . . . . 10 ⊢ ≤ = (le‘𝐾) | |
6 | dva1dim.r | . . . . . . . . . 10 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 5, 1, 2, 6, 3 | tendotp 36570 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)) |
8 | 4, 7 | jca 501 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
9 | 8 | 3expb 1113 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
10 | 9 | anass1rs 634 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
11 | eleq1 2838 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ↔ (𝑠‘𝐹) ∈ 𝑇)) | |
12 | fveq2 6332 | . . . . . . . 8 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑅‘𝑔) = (𝑅‘(𝑠‘𝐹))) | |
13 | 12 | breq1d 4796 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑅‘𝑔) ≤ (𝑅‘𝐹) ↔ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
14 | 11, 13 | anbi12d 616 | . . . . . 6 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) ↔ ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)))) |
15 | 10, 14 | syl5ibrcom 237 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
16 | 15 | rexlimdva 3179 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
17 | simpll 750 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
18 | simplr 752 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
19 | simprl 754 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝑔 ∈ 𝑇) | |
20 | simprr 756 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝑅‘𝑔) ≤ (𝑅‘𝐹)) | |
21 | 5, 1, 2, 6, 3 | tendoex 36784 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
22 | 17, 18, 19, 20, 21 | syl121anc 1481 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
23 | eqcom 2778 | . . . . . . 7 ⊢ ((𝑠‘𝐹) = 𝑔 ↔ 𝑔 = (𝑠‘𝐹)) | |
24 | 23 | rexbii 3189 | . . . . . 6 ⊢ (∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔 ↔ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
25 | 22, 24 | sylib 208 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
26 | 25 | ex 397 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹))) |
27 | 16, 26 | impbid 202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
28 | 27 | abbidv 2890 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))}) |
29 | df-rab 3070 | . 2 ⊢ {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))} | |
30 | 28, 29 | syl6eqr 2823 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {cab 2757 ∃wrex 3062 {crab 3065 class class class wbr 4786 ‘cfv 6031 lecple 16156 HLchlt 35159 LHypclh 35792 LTrncltrn 35909 trLctrl 35967 TEndoctendo 36561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-undef 7551 df-map 8011 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tendo 36564 |
This theorem is referenced by: dvhb1dimN 36795 dia1dim 36871 |
Copyright terms: Public domain | W3C validator |