 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtru Structured version   Visualization version   GIF version

Theorem dtru 4817
 Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both 𝑥 and 𝑦 (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 1954. This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2601 or ax-sep 4741. See dtruALT 4860 for a shorter proof using these axioms. The proof makes use of dummy variables 𝑧 and 𝑤 which do not appear in the final theorem. They must be distinct from each other and from 𝑥 and 𝑦. In other words, if we were to substitute 𝑥 for 𝑧 throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el 4807 . . . 4 𝑤 𝑥𝑤
2 ax-nul 4749 . . . . 5 𝑧𝑥 ¬ 𝑥𝑧
3 sp 2051 . . . . 5 (∀𝑥 ¬ 𝑥𝑧 → ¬ 𝑥𝑧)
42, 3eximii 1761 . . . 4 𝑧 ¬ 𝑥𝑧
5 eeanv 2181 . . . 4 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) ↔ (∃𝑤 𝑥𝑤 ∧ ∃𝑧 ¬ 𝑥𝑧))
61, 4, 5mpbir2an 954 . . 3 𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧)
7 ax9 2000 . . . . . 6 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
87com12 32 . . . . 5 (𝑥𝑤 → (𝑤 = 𝑧𝑥𝑧))
98con3dimp 457 . . . 4 ((𝑥𝑤 ∧ ¬ 𝑥𝑧) → ¬ 𝑤 = 𝑧)
1092eximi 1760 . . 3 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) → ∃𝑤𝑧 ¬ 𝑤 = 𝑧)
11 equequ2 1950 . . . . . . 7 (𝑧 = 𝑦 → (𝑤 = 𝑧𝑤 = 𝑦))
1211notbid 308 . . . . . 6 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦))
13 ax7 1940 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
1413con3d 148 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦))
1514spimev 2258 . . . . . 6 𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
1612, 15syl6bi 243 . . . . 5 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
17 ax7 1940 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1817con3d 148 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦))
1918spimev 2258 . . . . . 6 𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
2019a1d 25 . . . . 5 𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
2116, 20pm2.61i 176 . . . 4 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
2221exlimivv 1857 . . 3 (∃𝑤𝑧 ¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
236, 10, 22mp2b 10 . 2 𝑥 ¬ 𝑥 = 𝑦
24 exnal 1751 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2523, 24mpbi 220 1 ¬ ∀𝑥 𝑥 = 𝑦
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-nul 4749  ax-pow 4803 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707 This theorem is referenced by:  axc16b  4818  eunex  4819  nfnid  4857  dtrucor  4861  dvdemo1  4863  brprcneu  6141  zfcndpow  9382
 Copyright terms: Public domain W3C validator