MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtru Structured version   Visualization version   GIF version

Theorem dtru 4633
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both 𝑥 and 𝑦 (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 1906.

This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2485 or ax-sep 4558. See dtruALT 4673 for a shorter proof using these axioms.

The proof makes use of dummy variables 𝑧 and 𝑤 which do not appear in the final theorem. They must be distinct from each other and from 𝑥 and 𝑦. In other words, if we were to substitute 𝑥 for 𝑧 throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006.)

Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el 4623 . . . 4 𝑤 𝑥𝑤
2 ax-nul 4567 . . . . 5 𝑧𝑥 ¬ 𝑥𝑧
3 sp 1990 . . . . 5 (∀𝑥 ¬ 𝑥𝑧 → ¬ 𝑥𝑧)
42, 3eximii 1740 . . . 4 𝑧 ¬ 𝑥𝑧
5 eeanv 2126 . . . 4 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) ↔ (∃𝑤 𝑥𝑤 ∧ ∃𝑧 ¬ 𝑥𝑧))
61, 4, 5mpbir2an 947 . . 3 𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧)
7 ax9 1950 . . . . . 6 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
87com12 32 . . . . 5 (𝑥𝑤 → (𝑤 = 𝑧𝑥𝑧))
98con3dimp 450 . . . 4 ((𝑥𝑤 ∧ ¬ 𝑥𝑧) → ¬ 𝑤 = 𝑧)
1092eximi 1739 . . 3 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) → ∃𝑤𝑧 ¬ 𝑤 = 𝑧)
11 equequ2 1902 . . . . . . 7 (𝑧 = 𝑦 → (𝑤 = 𝑧𝑤 = 𝑦))
1211notbid 303 . . . . . 6 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦))
13 ax7 1892 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
1413con3d 142 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦))
1514spimev 2150 . . . . . 6 𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
1612, 15syl6bi 238 . . . . 5 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
17 ax7 1892 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1817con3d 142 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦))
1918spimev 2150 . . . . . 6 𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
2019a1d 25 . . . . 5 𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
2116, 20pm2.61i 171 . . . 4 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
2221exlimivv 1809 . . 3 (∃𝑤𝑧 ¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
236, 10, 22mp2b 10 . 2 𝑥 ¬ 𝑥 = 𝑦
24 exnal 1730 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2523, 24mpbi 215 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 378  wal 1466  wex 1692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-nul 4567  ax-pow 4619
This theorem depends on definitions:  df-bi 192  df-an 380  df-tru 1471  df-ex 1693  df-nf 1697
This theorem is referenced by:  axc16b  4634  eunex  4635  nfnid  4670  dtrucor  4674  dvdemo1  4676  brprcneu  5920  zfcndpow  9126
  Copyright terms: Public domain W3C validator