Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstregt0 Structured version   Visualization version   GIF version

Theorem dstregt0 40010
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dstregt0.1 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
dstregt0 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dstregt0
StepHypRef Expression
1 dstregt0.1 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
21eldifad 3727 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32imcld 14154 . . . . 5 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
43recnd 10280 . . . 4 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
51eldifbd 3728 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ ℝ)
6 reim0b 14078 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
72, 6syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
85, 7mtbid 313 . . . . 5 (𝜑 → ¬ (ℑ‘𝐴) = 0)
98neqned 2939 . . . 4 (𝜑 → (ℑ‘𝐴) ≠ 0)
104, 9absrpcld 14406 . . 3 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1110rphalfcld 12097 . 2 (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
122adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
13 recn 10238 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1413adantl 473 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14imsubd 14176 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦)))
16 simpr 479 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716reim0d 14184 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
1817oveq2d 6830 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0))
194adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
2019subid1d 10593 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
2115, 18, 203eqtrrd 2799 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴𝑦)))
2221fveq2d 6357 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴𝑦))))
2322oveq1d 6829 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴𝑦))) / 2))
2421, 19eqeltrrd 2840 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ∈ ℂ)
2524abscld 14394 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ)
2625rehalfcld 11491 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) ∈ ℝ)
2712, 14subcld 10604 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐴𝑦) ∈ ℂ)
2827abscld 14394 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐴𝑦)) ∈ ℝ)
299adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
3021, 29eqnetrrd 3000 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ≠ 0)
3124, 30absrpcld 14406 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+)
32 rphalflt 12073 . . . . . 6 ((abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
3331, 32syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
34 absimle 14268 . . . . . 6 ((𝐴𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3527, 34syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3626, 25, 28, 33, 35ltletrd 10409 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(𝐴𝑦)))
3723, 36eqbrtrd 4826 . . 3 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
3837ralrimiva 3104 . 2 (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
39 breq1 4807 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4039ralbidv 3124 . . 3 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4140rspcev 3449 . 2 ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
4211, 38, 41syl2anc 696 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  2c2 11282  +crp 12045  cim 14057  abscabs 14193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195
This theorem is referenced by:  limcrecl  40382
  Copyright terms: Public domain W3C validator