Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvunirn Structured version   Visualization version   GIF version

Theorem dstfrvunirn 30866
 Description: The limit of all preimage maps by the "lower than or equal" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
dstfrvunirn (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Distinct variable groups:   𝑃,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem dstfrvunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1red 10267 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → 1 ∈ ℝ)
2 dstfrv.1 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Prob)
3 dstfrv.2 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 30836 . . . . . . . . . . 11 (𝜑𝑋: dom 𝑃⟶ℝ)
54ffvelrnda 6523 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ∈ ℝ)
61, 5ifcld 4275 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ)
7 breq2 4808 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
8 breq2 4808 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ (𝑋𝑥) ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
9 1le1 10867 . . . . . . . . . . 11 1 ≤ 1
109a1i 11 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ≤ 1)
111, 5lenltd 10395 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (1 ≤ (𝑋𝑥) ↔ ¬ (𝑋𝑥) < 1))
1211biimpar 503 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → 1 ≤ (𝑋𝑥))
137, 8, 10, 12ifbothda 4267 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
14 flge1nn 12836 . . . . . . . . 9 ((if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
156, 13, 14syl2anc 696 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
1615peano2nnd 11249 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ)
172adantr 472 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑃 ∈ Prob)
183adantr 472 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑋 ∈ (rRndVar‘𝑃))
1916nnred 11247 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℝ)
20 simpr 479 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑥 dom 𝑃)
21 breq2 4808 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ 1 ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
22 breq2 4808 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ (𝑋𝑥) ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
235adantr 472 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ∈ ℝ)
24 1red 10267 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ∈ ℝ)
25 simpr 479 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) < 1)
2623, 24, 25ltled 10397 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ 1)
275leidd 10806 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ (𝑋𝑥))
2827adantr 472 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ (𝑋𝑥))
2921, 22, 26, 28ifbothda 4267 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
30 fllep1 12816 . . . . . . . . . 10 (if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
316, 30syl 17 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
325, 6, 19, 29, 31letrd 10406 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
3317, 18, 19, 20, 32dstfrvel 30865 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
34 oveq2 6822 . . . . . . . . 9 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑋RV/𝑐𝑛) = (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
3534eleq2d 2825 . . . . . . . 8 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑥 ∈ (𝑋RV/𝑐𝑛) ↔ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))))
3635rspcev 3449 . . . . . . 7 ((((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3716, 33, 36syl2anc 696 . . . . . 6 ((𝜑𝑥 dom 𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3837ex 449 . . . . 5 (𝜑 → (𝑥 dom 𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
392adantr 472 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
403adantr 472 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
41 simpr 479 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4241nnred 11247 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
4339, 40, 42orvclteel 30864 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
44 elunii 4593 . . . . . . . 8 ((𝑥 ∈ (𝑋RV/𝑐𝑛) ∧ (𝑋RV/𝑐𝑛) ∈ dom 𝑃) → 𝑥 dom 𝑃)
4544expcom 450 . . . . . . 7 ((𝑋RV/𝑐𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4643, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4746rexlimdva 3169 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4838, 47impbid 202 . . . 4 (𝜑 → (𝑥 dom 𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
49 eliun 4676 . . . 4 (𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
5048, 49syl6bbr 278 . . 3 (𝜑 → (𝑥 dom 𝑃𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛)))
5150eqrdv 2758 . 2 (𝜑 dom 𝑃 = 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛))
52 ovex 6842 . . 3 (𝑋RV/𝑐𝑛) ∈ V
5352dfiun3 5535 . 2 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) = ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛))
5451, 53syl6req 2811 1 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  ifcif 4230  ∪ cuni 4588  ∪ ciun 4672   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ran crn 5267  ‘cfv 6049  (class class class)co 6814  ℝcr 10147  1c1 10149   + caddc 10151   < clt 10286   ≤ cle 10287  ℕcn 11232  ⌊cfl 12805  Probcprb 30799  rRndVarcrrv 30832  ∘RV/𝑐corvc 30847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-ac2 9497  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-ac 9149  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-ioo 12392  df-ioc 12393  df-fl 12807  df-topgen 16326  df-top 20921  df-bases 20972  df-cld 21045  df-esum 30420  df-siga 30501  df-sigagen 30532  df-brsiga 30575  df-meas 30589  df-mbfm 30643  df-prob 30800  df-rrv 30833  df-orvc 30848 This theorem is referenced by:  dstfrvclim1  30869
 Copyright terms: Public domain W3C validator