Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapf1od Structured version   Visualization version   GIF version

Theorem dssmapf1od 38786
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapf1od (𝜑𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapf1od
StepHypRef Expression
1 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
2 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
3 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
41, 2, 3dssmapfvd 38782 . . 3 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
5 pwexg 4987 . . . . . . 7 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
63, 5syl 17 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
7 mptexg 6636 . . . . . 6 (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V)
86, 7syl 17 . . . . 5 (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V)
98ralrimivw 3093 . . . 4 (𝜑 → ∀𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V)
10 nfcv 2890 . . . . 5 𝑓(𝒫 𝐵𝑚 𝒫 𝐵)
1110fnmptf 6165 . . . 4 (∀𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵𝑚 𝒫 𝐵))
129, 11syl 17 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵𝑚 𝒫 𝐵))
13 fneq1 6128 . . . 4 (𝐷 = (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) → (𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵𝑚 𝒫 𝐵)))
1413biimprd 238 . . 3 (𝐷 = (𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) → ((𝑓 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵)))
154, 12, 14sylc 65 . 2 (𝜑𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
161, 2, 3dssmapnvod 38785 . 2 (𝜑𝐷 = 𝐷)
17 nvof1o 6687 . 2 ((𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐷 = 𝐷) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
1815, 16, 17syl2anc 696 1 (𝜑𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1620  wcel 2127  wral 3038  Vcvv 3328  cdif 3700  𝒫 cpw 4290  cmpt 4869  ccnv 5253   Fn wfn 6032  1-1-ontowf1o 6036  cfv 6037  (class class class)co 6801  𝑚 cmap 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-map 8013
This theorem is referenced by:  dssmap2d  38787  ntrclsf1o  38820  clsneif1o  38873  clsneikex  38875  clsneinex  38876  clsneiel1  38877  neicvgf1o  38883  neicvgmex  38886  neicvgel1  38888  dssmapntrcls  38897  dssmapclsntr  38898
  Copyright terms: Public domain W3C validator