![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapf1od | Structured version Visualization version GIF version |
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmapf1od | ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | dssmapfvd 38782 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
5 | pwexg 4987 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
7 | mptexg 6636 | . . . . . 6 ⊢ (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
9 | 8 | ralrimivw 3093 | . . . 4 ⊢ (𝜑 → ∀𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
10 | nfcv 2890 | . . . . 5 ⊢ Ⅎ𝑓(𝒫 𝐵 ↑𝑚 𝒫 𝐵) | |
11 | 10 | fnmptf 6165 | . . . 4 ⊢ (∀𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
13 | fneq1 6128 | . . . 4 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → (𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵))) | |
14 | 13 | biimprd 238 | . . 3 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → ((𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵))) |
15 | 4, 12, 14 | sylc 65 | . 2 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
16 | 1, 2, 3 | dssmapnvod 38785 | . 2 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
17 | nvof1o 6687 | . 2 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ∧ ◡𝐷 = 𝐷) → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
18 | 15, 16, 17 | syl2anc 696 | 1 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ∀wral 3038 Vcvv 3328 ∖ cdif 3700 𝒫 cpw 4290 ↦ cmpt 4869 ◡ccnv 5253 Fn wfn 6032 –1-1-onto→wf1o 6036 ‘cfv 6037 (class class class)co 6801 ↑𝑚 cmap 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-map 8013 |
This theorem is referenced by: dssmap2d 38787 ntrclsf1o 38820 clsneif1o 38873 clsneikex 38875 clsneinex 38876 clsneiel1 38877 neicvgf1o 38883 neicvgmex 38886 neicvgel1 38888 dssmapntrcls 38897 dssmapclsntr 38898 |
Copyright terms: Public domain | W3C validator |