MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   GIF version

Theorem dsmmelbas 20064
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p 𝑃 = (𝑆Xs𝑅)
dsmmelbas.c 𝐶 = (𝑆m 𝑅)
dsmmelbas.b 𝐵 = (Base‘𝑃)
dsmmelbas.h 𝐻 = (Base‘𝐶)
dsmmelbas.i (𝜑𝐼𝑉)
dsmmelbas.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
dsmmelbas (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Distinct variable groups:   𝑆,𝑎   𝑅,𝑎   𝑋,𝑎   𝐼,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝑃(𝑎)   𝐻(𝑎)   𝑉(𝑎)

Proof of Theorem dsmmelbas
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.r . . . . . 6 (𝜑𝑅 Fn 𝐼)
2 dsmmelbas.i . . . . . 6 (𝜑𝐼𝑉)
3 fnex 6466 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
41, 2, 3syl2anc 692 . . . . 5 (𝜑𝑅 ∈ V)
5 eqid 2620 . . . . . 6 {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}
65dsmmbase 20060 . . . . 5 (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
74, 6syl 17 . . . 4 (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
8 dsmmelbas.h . . . . 5 𝐻 = (Base‘𝐶)
9 dsmmelbas.c . . . . . 6 𝐶 = (𝑆m 𝑅)
109fveq2i 6181 . . . . 5 (Base‘𝐶) = (Base‘(𝑆m 𝑅))
118, 10eqtri 2642 . . . 4 𝐻 = (Base‘(𝑆m 𝑅))
127, 11syl6reqr 2673 . . 3 (𝜑𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin})
1312eleq2d 2685 . 2 (𝜑 → (𝑋𝐻𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}))
14 fveq1 6177 . . . . . . 7 (𝑏 = 𝑋 → (𝑏𝑎) = (𝑋𝑎))
1514neeq1d 2850 . . . . . 6 (𝑏 = 𝑋 → ((𝑏𝑎) ≠ (0g‘(𝑅𝑎)) ↔ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))))
1615rabbidv 3184 . . . . 5 (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
1716eleq1d 2684 . . . 4 (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817elrab 3357 . . 3 (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
19 dsmmelbas.b . . . . . . 7 𝐵 = (Base‘𝑃)
20 dsmmelbas.p . . . . . . . 8 𝑃 = (𝑆Xs𝑅)
2120fveq2i 6181 . . . . . . 7 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
2219, 21eqtr2i 2643 . . . . . 6 (Base‘(𝑆Xs𝑅)) = 𝐵
2322eleq2i 2691 . . . . 5 (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵)
2423a1i 11 . . . 4 (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵))
25 fndm 5978 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
26 rabeq 3187 . . . . . 6 (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
271, 25, 263syl 18 . . . . 5 (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
2827eleq1d 2684 . . . 4 (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
2924, 28anbi12d 746 . . 3 (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3018, 29syl5bb 272 . 2 (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3113, 30bitrd 268 1 (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  {crab 2913  Vcvv 3195  dom cdm 5104   Fn wfn 5871  cfv 5876  (class class class)co 6635  Fincfn 7940  Basecbs 15838  0gc0g 16081  Xscprds 16087  m cdsmm 20056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-hom 15947  df-cco 15948  df-prds 16089  df-dsmm 20057
This theorem is referenced by:  dsmm0cl  20065  dsmmacl  20066  dsmmsubg  20068  dsmmlss  20069
  Copyright terms: Public domain W3C validator