MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Visualization version   GIF version

Theorem dsmmacl 20308
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmmacl.j (𝜑𝐽𝐻)
dsmmacl.k (𝜑𝐾𝐻)
dsmmacl.a + = (+g𝑃)
Assertion
Ref Expression
dsmmacl (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)

Proof of Theorem dsmmacl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2761 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 dsmmacl.a . . 3 + = (+g𝑃)
4 dsmmcl.s . . 3 (𝜑𝑆𝑉)
5 dsmmcl.i . . 3 (𝜑𝐼𝑊)
6 dsmmcl.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
7 dsmmacl.j . . . . 5 (𝜑𝐽𝐻)
8 eqid 2761 . . . . . 6 (𝑆m 𝑅) = (𝑆m 𝑅)
9 dsmmcl.h . . . . . 6 𝐻 = (Base‘(𝑆m 𝑅))
10 ffn 6207 . . . . . . 7 (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼)
116, 10syl 17 . . . . . 6 (𝜑𝑅 Fn 𝐼)
121, 8, 2, 9, 5, 11dsmmelbas 20306 . . . . 5 (𝜑 → (𝐽𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
137, 12mpbid 222 . . . 4 (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1413simpld 477 . . 3 (𝜑𝐽 ∈ (Base‘𝑃))
15 dsmmacl.k . . . . 5 (𝜑𝐾𝐻)
161, 8, 2, 9, 5, 11dsmmelbas 20306 . . . . 5 (𝜑 → (𝐾𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
1715, 16mpbid 222 . . . 4 (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817simpld 477 . . 3 (𝜑𝐾 ∈ (Base‘𝑃))
191, 2, 3, 4, 5, 6, 14, 18prdsplusgcl 17543 . 2 (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃))
204adantr 472 . . . . . 6 ((𝜑𝑎𝐼) → 𝑆𝑉)
215adantr 472 . . . . . 6 ((𝜑𝑎𝐼) → 𝐼𝑊)
2211adantr 472 . . . . . 6 ((𝜑𝑎𝐼) → 𝑅 Fn 𝐼)
2314adantr 472 . . . . . 6 ((𝜑𝑎𝐼) → 𝐽 ∈ (Base‘𝑃))
2418adantr 472 . . . . . 6 ((𝜑𝑎𝐼) → 𝐾 ∈ (Base‘𝑃))
25 simpr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝑎𝐼)
261, 2, 20, 21, 22, 23, 24, 3, 25prdsplusgfval 16357 . . . . 5 ((𝜑𝑎𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)))
2726neeq1d 2992 . . . 4 ((𝜑𝑎𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))))
2827rabbidva 3329 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))})
2913simprd 482 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
3017simprd 482 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
31 unfi 8395 . . . . 5 (({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
3229, 30, 31syl2anc 696 . . . 4 (𝜑 → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
33 neorian 3027 . . . . . . . . . 10 (((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
3433bicomi 214 . . . . . . . . 9 (¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))))
3534con1bii 345 . . . . . . . 8 (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
366ffvelrnda 6524 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑅𝑎) ∈ Mnd)
37 eqid 2761 . . . . . . . . . . . 12 (Base‘(𝑅𝑎)) = (Base‘(𝑅𝑎))
38 eqid 2761 . . . . . . . . . . . 12 (0g‘(𝑅𝑎)) = (0g‘(𝑅𝑎))
3937, 38mndidcl 17530 . . . . . . . . . . 11 ((𝑅𝑎) ∈ Mnd → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
4036, 39syl 17 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
41 eqid 2761 . . . . . . . . . . 11 (+g‘(𝑅𝑎)) = (+g‘(𝑅𝑎))
4237, 41, 38mndlid 17533 . . . . . . . . . 10 (((𝑅𝑎) ∈ Mnd ∧ (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎))) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
4336, 40, 42syl2anc 696 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
44 oveq12 6824 . . . . . . . . . 10 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))))
4544eqeq1d 2763 . . . . . . . . 9 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎)) ↔ ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎))))
4643, 45syl5ibrcom 237 . . . . . . . 8 ((𝜑𝑎𝐼) → (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4735, 46syl5bi 232 . . . . . . 7 ((𝜑𝑎𝐼) → (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4847necon1ad 2950 . . . . . 6 ((𝜑𝑎𝐼) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎)) → ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))))
4948ss2rabdv 3825 . . . . 5 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))})
50 unrab 4042 . . . . 5 ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) = {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))}
5149, 50syl6sseqr 3794 . . . 4 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}))
52 ssfi 8348 . . . 4 ((({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin ∧ {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))})) → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5332, 51, 52syl2anc 696 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5428, 53eqeltrd 2840 . 2 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
551, 8, 2, 9, 5, 11dsmmelbas 20306 . 2 (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
5619, 54, 55mpbir2and 995 1 (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1632  wcel 2140  wne 2933  {crab 3055  cun 3714  wss 3716   Fn wfn 6045  wf 6046  cfv 6050  (class class class)co 6815  Fincfn 8124  Basecbs 16080  +gcplusg 16164  0gc0g 16323  Xscprds 16329  Mndcmnd 17516  m cdsmm 20298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-0g 16325  df-prds 16331  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-dsmm 20299
This theorem is referenced by:  dsmmsubg  20310
  Copyright terms: Public domain W3C validator