MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngunz Structured version   Visualization version   GIF version

Theorem drngunz 18972
Description: A division ring's unit is different from its zero. (Contributed by NM, 8-Sep-2011.)
Hypotheses
Ref Expression
drngunz.z 0 = (0g𝑅)
drngunz.u 1 = (1r𝑅)
Assertion
Ref Expression
drngunz (𝑅 ∈ DivRing → 10 )

Proof of Theorem drngunz
StepHypRef Expression
1 drngring 18964 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2771 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
3 drngunz.u . . . . 5 1 = (1r𝑅)
42, 31unit 18866 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Unit‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ DivRing → 1 ∈ (Unit‘𝑅))
6 eqid 2771 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7 drngunz.z . . . 4 0 = (0g𝑅)
86, 2, 7drngunit 18962 . . 3 (𝑅 ∈ DivRing → ( 1 ∈ (Unit‘𝑅) ↔ ( 1 ∈ (Base‘𝑅) ∧ 10 )))
95, 8mpbid 222 . 2 (𝑅 ∈ DivRing → ( 1 ∈ (Base‘𝑅) ∧ 10 ))
109simprd 483 1 (𝑅 ∈ DivRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cfv 6031  Basecbs 16064  0gc0g 16308  1rcur 18709  Ringcrg 18755  Unitcui 18847  DivRingcdr 18957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-drng 18959
This theorem is referenced by:  abv1  19043  lspsneq  19335  islbs2  19369  islbs3  19370  drngnzr  19477  obsne0  20286  cphsubrglem  23196  ofldlt1  30153  lkrshp  34914  lcfl7lem  37309
  Copyright terms: Public domain W3C validator