![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnguc1p | Structured version Visualization version GIF version |
Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
drnguc1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
drnguc1p.b | ⊢ 𝐵 = (Base‘𝑃) |
drnguc1p.z | ⊢ 0 = (0g‘𝑃) |
drnguc1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
drnguc1p | ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1131 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐵) | |
2 | simp3 1132 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ≠ 0 ) | |
3 | eqid 2771 | . . . . . 6 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
4 | drnguc1p.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
5 | drnguc1p.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 3, 4, 5, 6 | coe1f 19796 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
8 | 7 | 3ad2ant2 1128 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
9 | drngring 18964 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
10 | eqid 2771 | . . . . . 6 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
11 | drnguc1p.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
12 | 10, 5, 11, 4 | deg1nn0cl 24068 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (( deg1 ‘𝑅)‘𝐹) ∈ ℕ0) |
13 | 9, 12 | syl3an1 1166 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (( deg1 ‘𝑅)‘𝐹) ∈ ℕ0) |
14 | 8, 13 | ffvelrnd 6505 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅)) |
15 | eqid 2771 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 10, 5, 11, 4, 15, 3 | deg1ldg 24072 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
17 | 9, 16 | syl3an1 1166 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
18 | eqid 2771 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
19 | 6, 18, 15 | drngunit 18962 | . . . 4 ⊢ (𝑅 ∈ DivRing → (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
20 | 19 | 3ad2ant1 1127 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
21 | 14, 17, 20 | mpbir2and 692 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅)) |
22 | drnguc1p.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
23 | 5, 4, 11, 10, 22, 18 | isuc1p 24120 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
24 | 1, 2, 21, 23 | syl3anbrc 1428 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ⟶wf 6026 ‘cfv 6030 ℕ0cn0 11499 Basecbs 16064 0gc0g 16308 Ringcrg 18755 Unitcui 18847 DivRingcdr 18957 Poly1cpl1 19762 coe1cco1 19763 deg1 cdg1 24034 Unic1pcuc1p 24106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-sup 8508 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-drng 18959 df-psr 19571 df-mpl 19573 df-opsr 19575 df-psr1 19765 df-ply1 19767 df-coe1 19768 df-cnfld 19962 df-mdeg 24035 df-deg1 24036 df-uc1p 24111 |
This theorem is referenced by: ig1peu 24151 |
Copyright terms: Public domain | W3C validator |