![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngring | Structured version Visualization version GIF version |
Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011.) |
Ref | Expression |
---|---|
drngring | ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2770 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | eqid 2770 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 18960 | . 2 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g‘𝑅)}))) |
5 | 4 | simplbi 479 | 1 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∖ cdif 3718 {csn 4314 ‘cfv 6031 Basecbs 16063 0gc0g 16307 Ringcrg 18754 Unitcui 18846 DivRingcdr 18956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-drng 18958 |
This theorem is referenced by: drnggrp 18964 drngid 18970 drngunz 18971 drnginvrcl 18973 drnginvrn0 18974 drnginvrl 18975 drnginvrr 18976 drngmul0or 18977 abvtriv 19050 rlmlvec 19420 drngnidl 19443 drnglpir 19467 drngnzr 19476 drngdomn 19517 qsssubdrg 20019 frlmphllem 20335 frlmphl 20336 cvsdivcl 23151 qcvs 23165 cphsubrglem 23195 rrxcph 23398 drnguc1p 24149 ig1peu 24150 ig1pcl 24154 ig1pdvds 24155 ig1prsp 24156 ply1lpir 24157 padicabv 25539 ofldchr 30148 reofld 30174 rearchi 30176 xrge0slmod 30178 zrhunitpreima 30356 elzrhunit 30357 qqhval2lem 30359 qqh0 30362 qqh1 30363 qqhf 30364 qqhghm 30366 qqhrhm 30367 qqhnm 30368 qqhucn 30370 zrhre 30397 qqhre 30398 lindsdom 33729 lindsenlbs 33730 matunitlindflem1 33731 matunitlindflem2 33732 matunitlindf 33733 dvalveclem 36828 dvhlveclem 36911 hlhilsrnglem 37756 sdrgacs 38290 cntzsdrg 38291 drhmsubc 42598 drngcat 42599 drhmsubcALTV 42616 drngcatALTV 42617 aacllem 43068 |
Copyright terms: Public domain | W3C validator |