![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
drngpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
drngpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
drngpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
drngpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
drngpropd | ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | drngpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | drngpropd.4 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
4 | 1, 2, 3 | unitpropd 18743 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿)) |
6 | 1, 2 | eqtr3d 2687 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿)) |
8 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾)) |
9 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿)) |
10 | drngpropd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
11 | 10 | adantlr 751 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐾 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
12 | 8, 9, 11 | grpidpropd 17308 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → (0g‘𝐾) = (0g‘𝐿)) |
13 | 12 | sneqd 4222 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → {(0g‘𝐾)} = {(0g‘𝐿)}) |
14 | 7, 13 | difeq12d 3762 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) |
15 | 5, 14 | eqeq12d 2666 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
16 | 15 | pm5.32da 674 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
17 | 1, 2, 10, 3 | ringpropd 18628 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
18 | 17 | anbi1d 741 | . . 3 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
19 | 16, 18 | bitrd 268 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)})))) |
20 | eqid 2651 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | eqid 2651 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
22 | eqid 2651 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
23 | 20, 21, 22 | isdrng 18799 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
24 | eqid 2651 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
25 | eqid 2651 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
26 | eqid 2651 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
27 | 24, 25, 26 | isdrng 18799 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g‘𝐿)}))) |
28 | 19, 23, 27 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 {csn 4210 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 .rcmulr 15989 0gc0g 16147 Ringcrg 18593 Unitcui 18685 DivRingcdr 18795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-drng 18797 |
This theorem is referenced by: fldpropd 18823 lvecprop2d 19214 hlhildrng 37561 |
Copyright terms: Public domain | W3C validator |