MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngpropd Structured version   Visualization version   GIF version

Theorem drngpropd 18822
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
drngpropd.1 (𝜑𝐵 = (Base‘𝐾))
drngpropd.2 (𝜑𝐵 = (Base‘𝐿))
drngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
drngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
drngpropd (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem drngpropd
StepHypRef Expression
1 drngpropd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 drngpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 drngpropd.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41, 2, 3unitpropd 18743 . . . . . 6 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
54adantr 480 . . . . 5 ((𝜑𝐾 ∈ Ring) → (Unit‘𝐾) = (Unit‘𝐿))
61, 2eqtr3d 2687 . . . . . . 7 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐾) = (Base‘𝐿))
81adantr 480 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐾))
92adantr 480 . . . . . . . 8 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
10 drngpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 751 . . . . . . . 8 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
128, 9, 11grpidpropd 17308 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (0g𝐾) = (0g𝐿))
1312sneqd 4222 . . . . . 6 ((𝜑𝐾 ∈ Ring) → {(0g𝐾)} = {(0g𝐿)})
147, 13difeq12d 3762 . . . . 5 ((𝜑𝐾 ∈ Ring) → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐿) ∖ {(0g𝐿)}))
155, 14eqeq12d 2666 . . . 4 ((𝜑𝐾 ∈ Ring) → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
1615pm5.32da 674 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
171, 2, 10, 3ringpropd 18628 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1817anbi1d 741 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
1916, 18bitrd 268 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)}))))
20 eqid 2651 . . 3 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2651 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
22 eqid 2651 . . 3 (0g𝐾) = (0g𝐾)
2320, 21, 22isdrng 18799 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
24 eqid 2651 . . 3 (Base‘𝐿) = (Base‘𝐿)
25 eqid 2651 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
26 eqid 2651 . . 3 (0g𝐿) = (0g𝐿)
2724, 25, 26isdrng 18799 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐿) ∖ {(0g𝐿)})))
2819, 23, 273bitr4g 303 1 (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cdif 3604  {csn 4210  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147  Ringcrg 18593  Unitcui 18685  DivRingcdr 18795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-drng 18797
This theorem is referenced by:  fldpropd  18823  lvecprop2d  19214  hlhildrng  37561
  Copyright terms: Public domain W3C validator