MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   GIF version

Theorem drngnidl 19443
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b 𝐵 = (Base‘𝑅)
drngnidl.z 0 = (0g𝑅)
drngnidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngnidl (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})

Proof of Theorem drngnidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → 𝑎 = { 0 })
21orcd 853 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
3 drngring 18963 . . . . . . . . . . 11 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
43ad2antrr 697 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring)
5 simplr 744 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎𝑈)
6 simpr 471 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 })
7 drngnidl.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑅)
8 drngnidl.z . . . . . . . . . . 11 0 = (0g𝑅)
97, 8lidlnz 19442 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
104, 5, 6, 9syl3anc 1475 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
11 simpll 742 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ DivRing)
12 drngnidl.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑅)
1312, 7lidlss 19424 . . . . . . . . . . . . . . . 16 (𝑎𝑈𝑎𝐵)
1413adantl 467 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎𝐵)
1514sselda 3750 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑏𝑎) → 𝑏𝐵)
1615adantrr 688 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝐵)
17 simprr 748 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏0 )
18 eqid 2770 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
19 eqid 2770 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
20 eqid 2770 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
2112, 8, 18, 19, 20drnginvrl 18975 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
2211, 16, 17, 21syl3anc 1475 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
233ad2antrr 697 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ Ring)
24 simplr 744 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑎𝑈)
2512, 8, 20drnginvrcl 18973 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ((invr𝑅)‘𝑏) ∈ 𝐵)
2611, 16, 17, 25syl3anc 1475 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → ((invr𝑅)‘𝑏) ∈ 𝐵)
27 simprl 746 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝑎)
287, 12, 18lidlmcl 19431 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑎𝑈) ∧ (((invr𝑅)‘𝑏) ∈ 𝐵𝑏𝑎)) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2923, 24, 26, 27, 28syl22anc 1476 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
3022, 29eqeltrrd 2850 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (1r𝑅) ∈ 𝑎)
3130rexlimdvaa 3179 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (∃𝑏𝑎 𝑏0 → (1r𝑅) ∈ 𝑎))
3231imp 393 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ ∃𝑏𝑎 𝑏0 ) → (1r𝑅) ∈ 𝑎)
3310, 32syldan 571 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (1r𝑅) ∈ 𝑎)
347, 12, 19lidl1el 19432 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
353, 34sylan 561 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3635adantr 466 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3733, 36mpbid 222 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵)
3837olcd 854 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
392, 38pm2.61dane 3029 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
40 vex 3352 . . . . . 6 𝑎 ∈ V
4140elpr 4336 . . . . 5 (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
4239, 41sylibr 224 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎 ∈ {{ 0 }, 𝐵})
4342ex 397 . . 3 (𝑅 ∈ DivRing → (𝑎𝑈𝑎 ∈ {{ 0 }, 𝐵}))
4443ssrdv 3756 . 2 (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵})
457, 8lidl0 19433 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
467, 12lidl1 19434 . . . 4 (𝑅 ∈ Ring → 𝐵𝑈)
47 snex 5036 . . . . . 6 { 0 } ∈ V
48 fvex 6342 . . . . . . 7 (Base‘𝑅) ∈ V
4912, 48eqeltri 2845 . . . . . 6 𝐵 ∈ V
5047, 49prss 4484 . . . . 5 (({ 0 } ∈ 𝑈𝐵𝑈) ↔ {{ 0 }, 𝐵} ⊆ 𝑈)
5150bicomi 214 . . . 4 ({{ 0 }, 𝐵} ⊆ 𝑈 ↔ ({ 0 } ∈ 𝑈𝐵𝑈))
5245, 46, 51sylanbrc 564 . . 3 (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈)
533, 52syl 17 . 2 (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈)
5444, 53eqssd 3767 1 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wne 2942  wrex 3061  Vcvv 3349  wss 3721  {csn 4314  {cpr 4316  cfv 6031  (class class class)co 6792  Basecbs 16063  .rcmulr 16149  0gc0g 16307  1rcur 18708  Ringcrg 18754  invrcinvr 18878  DivRingcdr 18956  LIdealclidl 19384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-subrg 18987  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-lidl 19388
This theorem is referenced by:  drnglpir  19467
  Copyright terms: Public domain W3C validator