![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngmulne0 | Structured version Visualization version GIF version |
Description: A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
drngmuleq0.b | ⊢ 𝐵 = (Base‘𝑅) |
drngmuleq0.o | ⊢ 0 = (0g‘𝑅) |
drngmuleq0.t | ⊢ · = (.r‘𝑅) |
drngmuleq0.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drngmuleq0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drngmuleq0.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
drngmulne0 | ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmuleq0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | drngmuleq0.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | drngmuleq0.t | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | drngmuleq0.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
5 | drngmuleq0.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | drngmuleq0.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | drngmul0or 18891 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
8 | 7 | necon3abid 2932 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
9 | neanior 2988 | . 2 ⊢ ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 )) | |
10 | 8, 9 | syl6bbr 278 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 .rcmulr 16065 0gc0g 16223 DivRingcdr 18870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-minusg 17548 df-mgp 18611 df-ur 18623 df-ring 18670 df-oppr 18744 df-dvdsr 18762 df-unit 18763 df-invr 18793 df-drng 18872 |
This theorem is referenced by: orngmullt 30039 lcfrlem31 37281 |
Copyright terms: Public domain | W3C validator |