![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngid2 | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
drngid2.b | ⊢ 𝐵 = (Base‘𝑅) |
drngid2.t | ⊢ · = (.r‘𝑅) |
drngid2.o | ⊢ 0 = (0g‘𝑅) |
drngid2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
drngid2 | ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1056 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) | |
2 | eldifsn 4350 | . . . . 5 ⊢ (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 )) | |
3 | 2 | anbi1i 731 | . . . 4 ⊢ ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) |
4 | 1, 3 | bitr4i 267 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼)) |
5 | drngid2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | drngid2.o | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2651 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) | |
8 | 5, 6, 7 | drngmgp 18807 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) |
9 | difss 3770 | . . . . . 6 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
10 | eqid 2651 | . . . . . . . 8 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | 10, 5 | mgpbas 18541 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
12 | 7, 11 | ressbas2 15978 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
13 | 9, 12 | ax-mp 5 | . . . . 5 ⊢ (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
14 | fvex 6239 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
15 | 5, 14 | eqeltri 2726 | . . . . . 6 ⊢ 𝐵 ∈ V |
16 | difexg 4841 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V) | |
17 | drngid2.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
18 | 10, 17 | mgpplusg 18539 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘𝑅)) |
19 | 7, 18 | ressplusg 16040 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
20 | 15, 16, 19 | mp2b 10 | . . . . 5 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
21 | eqid 2651 | . . . . 5 ⊢ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) | |
22 | 13, 20, 21 | isgrpid2 17505 | . . . 4 ⊢ (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
23 | 8, 22 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
24 | 4, 23 | syl5bb 272 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
25 | drngid2.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
26 | 5, 6, 25, 7 | drngid 18809 | . . 3 ⊢ (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
27 | 26 | eqeq1d 2653 | . 2 ⊢ (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
28 | 24, 27 | bitr4d 271 | 1 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 ↾s cress 15905 +gcplusg 15988 .rcmulr 15989 0gc0g 16147 Grpcgrp 17469 mulGrpcmgp 18535 1rcur 18547 DivRingcdr 18795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 |
This theorem is referenced by: erng1r 36600 dvalveclem 36631 |
Copyright terms: Public domain | W3C validator |