![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drex1 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
drex1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 307 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | dral1 2356 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)) |
4 | 3 | notbid 307 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)) |
5 | df-ex 1745 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1745 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 303 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: exdistrf 2364 drsb1 2405 eujustALT 2501 copsexg 4985 dfid3 5054 dropab1 38968 dropab2 38969 e2ebind 39096 e2ebindVD 39462 e2ebindALT 39479 |
Copyright terms: Public domain | W3C validator |