![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dral2-o | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral2 2428 using ax-c11 34593. (Contributed by NM, 27-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dral2-o.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dral2-o | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae-o 34609 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
2 | dral2-o.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | albidh 1906 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-11 2147 ax-c5 34589 ax-c4 34590 ax-c7 34591 ax-c10 34592 ax-c11 34593 ax-c9 34596 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1818 |
This theorem is referenced by: ax12eq 34647 ax12el 34648 ax12indalem 34651 ax12inda2ALT 34652 |
Copyright terms: Public domain | W3C validator |