Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   GIF version

Theorem dpval 29937
 Description: Define the value of the decimal point operator. See df-dp 29936. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)

Proof of Theorem dpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 29918 . . 3 𝑥𝑦 = (𝑥 + (𝑦 / 10))
2 oveq1 6800 . . 3 (𝑥 = 𝐴 → (𝑥 + (𝑦 / 10)) = (𝐴 + (𝑦 / 10)))
31, 2syl5eq 2817 . 2 (𝑥 = 𝐴𝑥𝑦 = (𝐴 + (𝑦 / 10)))
4 oveq1 6800 . . . 4 (𝑦 = 𝐵 → (𝑦 / 10) = (𝐵 / 10))
54oveq2d 6809 . . 3 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = (𝐴 + (𝐵 / 10)))
6 df-dp2 29918 . . 3 𝐴𝐵 = (𝐴 + (𝐵 / 10))
75, 6syl6eqr 2823 . 2 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = 𝐴𝐵)
8 df-dp 29936 . 2 . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
96ovexi 6824 . 2 𝐴𝐵 ∈ V
103, 7, 8, 9ovmpt2 6943 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  (class class class)co 6793  ℝcr 10137  0cc0 10138  1c1 10139   + caddc 10141   / cdiv 10886  ℕ0cn0 11494  ;cdc 11695  _cdp2 29917  .cdp 29935 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-dp2 29918  df-dp 29936 This theorem is referenced by:  dpcl  29938  dpfrac1  29939  dpfrac1OLD  29940  dpval2  29941  dpmul1000  29947  dpadd2  29958
 Copyright terms: Public domain W3C validator