![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpval | Structured version Visualization version GIF version |
Description: Define the value of the decimal point operator. See df-dp 29936. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
dpval | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 29918 | . . 3 ⊢ _𝑥𝑦 = (𝑥 + (𝑦 / ;10)) | |
2 | oveq1 6800 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (𝑦 / ;10)) = (𝐴 + (𝑦 / ;10))) | |
3 | 1, 2 | syl5eq 2817 | . 2 ⊢ (𝑥 = 𝐴 → _𝑥𝑦 = (𝐴 + (𝑦 / ;10))) |
4 | oveq1 6800 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 / ;10) = (𝐵 / ;10)) | |
5 | 4 | oveq2d 6809 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = (𝐴 + (𝐵 / ;10))) |
6 | df-dp2 29918 | . . 3 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
7 | 5, 6 | syl6eqr 2823 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = _𝐴𝐵) |
8 | df-dp 29936 | . 2 ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | |
9 | 6 | ovexi 6824 | . 2 ⊢ _𝐴𝐵 ∈ V |
10 | 3, 7, 8, 9 | ovmpt2 6943 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 (class class class)co 6793 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 / cdiv 10886 ℕ0cn0 11494 ;cdc 11695 _cdp2 29917 .cdp 29935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-dp2 29918 df-dp 29936 |
This theorem is referenced by: dpcl 29938 dpfrac1 29939 dpfrac1OLD 29940 dpval2 29941 dpmul1000 29947 dpadd2 29958 |
Copyright terms: Public domain | W3C validator |