MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdz Structured version   Visualization version   GIF version

Theorem dprdz 18636
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprd0.0 0 = (0g𝐺)
Assertion
Ref Expression
dprdz ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Distinct variable groups:   𝑥, 0   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉

Proof of Theorem dprdz
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2770 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 dprd0.0 . . 3 0 = (0g𝐺)
3 eqid 2770 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 simpl 468 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺 ∈ Grp)
5 simpr 471 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐼𝑉)
620subg 17826 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
76ad2antrr 697 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑥𝐼) → { 0 } ∈ (SubGrp‘𝐺))
8 eqid 2770 . . . 4 (𝑥𝐼 ↦ { 0 }) = (𝑥𝐼 ↦ { 0 })
97, 8fmptd 6527 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
10 eqid 2770 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1110, 2grpidcl 17657 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1211adantr 466 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (Base‘𝐺))
1312snssd 4473 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (Base‘𝐺))
1410, 1cntzsubg 17975 . . . . . . . 8 ((𝐺 ∈ Grp ∧ { 0 } ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
1513, 14syldan 571 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
162subg0cl 17809 . . . . . . 7 (((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1715, 16syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1817snssd 4473 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
1918adantr 466 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
20 simpr1 1232 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑦𝐼)
21 eqidd 2771 . . . . . 6 (𝑥 = 𝑦 → { 0 } = { 0 })
22 snex 5036 . . . . . 6 { 0 } ∈ V
2321, 8, 22fvmpt3i 6429 . . . . 5 (𝑦𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
2420, 23syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
25 simpr2 1234 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑧𝐼)
26 eqidd 2771 . . . . . . 7 (𝑥 = 𝑧 → { 0 } = { 0 })
2726, 8, 22fvmpt3i 6429 . . . . . 6 (𝑧𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2825, 27syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2928fveq2d 6336 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 }))
3019, 24, 293sstr4d 3795 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)))
3123adantl 467 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
3231ineq1d 3962 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))))
3310subgacs 17836 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3433ad2antrr 697 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3534acsmred 16523 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
36 imassrn 5618 . . . . . . . . . . 11 ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥𝐼 ↦ { 0 })
379adantr 466 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
38 frn 6193 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
3937, 38syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
40 mresspw 16459 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4135, 40syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4239, 41sstrd 3760 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ 𝒫 (Base‘𝐺))
4336, 42syl5ss 3761 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺))
44 sspwuni 4743 . . . . . . . . . 10 (((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
4543, 44sylib 208 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
463mrccl 16478 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
4735, 45, 46syl2anc 565 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
482subg0cl 17809 . . . . . . . 8 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4947, 48syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
5049snssd 4473 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → { 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
51 df-ss 3735 . . . . . 6 ({ 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5250, 51sylib 208 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5332, 52eqtrd 2804 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
54 eqimss 3804 . . . 4 ((((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
5553, 54syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
561, 2, 3, 4, 5, 9, 30, 55dmdprdd 18605 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺dom DProd (𝑥𝐼 ↦ { 0 }))
578, 7dmmptd 6164 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → dom (𝑥𝐼 ↦ { 0 }) = 𝐼)
586adantr 466 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ∈ (SubGrp‘𝐺))
59 eqimss 3804 . . . . 5 (((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6031, 59syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6156, 57, 58, 60dprdlub 18632 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ⊆ { 0 })
62 dprdsubg 18630 . . . . 5 (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺))
632subg0cl 17809 . . . . 5 ((𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6456, 62, 633syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6564snssd 4473 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6661, 65eqssd 3767 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 })
6756, 66jca 495 1 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  cdif 3718  cin 3720  wss 3721  𝒫 cpw 4295  {csn 4314   cuni 4572   class class class wbr 4784  cmpt 4861  dom cdm 5249  ran crn 5250  cima 5252  wf 6027  cfv 6031  (class class class)co 6792  Basecbs 16063  0gc0g 16307  Moorecmre 16449  mrClscmrc 16450  ACScacs 16452  Grpcgrp 17629  SubGrpcsubg 17795  Cntzccntz 17954   DProd cdprd 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-ghm 17865  df-gim 17908  df-cntz 17956  df-oppg 17982  df-cmn 18401  df-dprd 18601
This theorem is referenced by:  dprd0  18637
  Copyright terms: Public domain W3C validator