![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdwd | Structured version Visualization version GIF version |
Description: A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdwd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) |
dprdwd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) |
Ref | Expression |
---|---|
dprdwd | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2652 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) = (𝑥 ∈ 𝐼 ↦ 𝐴)) | |
2 | dprdwd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) | |
3 | 2 | ralrimiva 2995 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥)) |
4 | dprdff.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
5 | dprdff.2 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 4, 5 | dprddomcld 18446 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ V) |
7 | mptelixpg 7987 | . . . . . . 7 ⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ ∀𝑥 ∈ 𝐼 𝐴 ∈ (𝑆‘𝑥))) |
9 | 3, 8 | mpbird 247 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
10 | fveq2 6229 | . . . . . 6 ⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) | |
11 | 10 | cbvixpv 7968 | . . . . 5 ⊢ X𝑥 ∈ 𝐼 (𝑆‘𝑥) = X𝑖 ∈ 𝐼 (𝑆‘𝑖) |
12 | 9, 11 | syl6eleq 2740 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
13 | dprdwd.4 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) | |
14 | breq1 4688 | . . . . 5 ⊢ (ℎ = (𝑥 ∈ 𝐼 ↦ 𝐴) → (ℎ finSupp 0 ↔ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) | |
15 | 14 | elrab 3396 | . . . 4 ⊢ ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ↔ ((𝑥 ∈ 𝐼 ↦ 𝐴) ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 )) |
16 | 12, 13, 15 | sylanbrc 699 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
17 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
18 | 16, 17 | syl6eleqr 2741 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
19 | 1, 18 | eqeltrrd 2731 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ‘cfv 5926 Xcixp 7950 finSupp cfsupp 8316 DProd cdprd 18438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-oprab 6694 df-mpt2 6695 df-ixp 7951 df-dprd 18440 |
This theorem is referenced by: dprdfid 18462 dprdfinv 18464 dprdfadd 18465 dmdprdsplitlem 18482 dpjidcl 18503 dchrptlem3 25036 |
Copyright terms: Public domain | W3C validator |